952 resultados para plant protein sources


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phototropism, or plant growth in response to unidirectional light, is an adaptive response of crucial importance. Lateral differences in low fluence rates of blue light are detected by phototropin 1 (phot1) in Arabidopsis. Only NONPHOTOTROPIC HYPOCOTYL 3 (NPH3) and root phototropism 2, both belonging to the same family of proteins, have been previously identified as phototropin-interacting signal transducers involved in phototropism. PHYTOCHROME KINASE SUBSTRATE (PKS) 1 and PKS2 are two phytochrome signaling components belonging to a small gene family in Arabidopsis (PKS1-PKS4). The strong enhancement of PKS1 expression by blue light and its light induction in the elongation zone of the hypocotyl prompted us to study the function of this gene family during phototropism. Photobiological experiments show that the PKS proteins are critical for hypocotyl phototropism. Furthermore, PKS1 interacts with phot1 and NPH3 in vivo at the plasma membrane and in vitro, indicating that the PKS proteins may function directly with phot1 and NPH3 to mediate phototropism. The phytochromes are known to influence phototropism but the mechanism involved is still unclear. We show that PKS1 induction by a pulse of blue light is phytochrome A-dependent, suggesting that the PKS proteins may provide a molecular link between these two photoreceptor families.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS: To develop reporter constructs based on stable and unstable variants of the green fluorescent protein (GFP) for monitoring balanced production of antifungal compounds that are crucial for the capacity of the root-colonizing Pseudomonas fluorescens strain CHA0 to control plant diseases caused by soil-borne pathogenic fungi. METHODS AND RESULTS: Pseudomonas fluorescens CHA0 produces the three antifungal metabolites 2,4-diacetylphloroglucinol (DAPG), pyoluteorin (PLT) and pyrrolnitrin (PRN). The gfp[mut3] and gfp[AAV] reporter genes were fused to the promoter regions of the DAPG, PLT and PRN biosynthetic genes. The reporter fusions were then used to follow the kinetics of expression of the three antifungal metabolites in a microplate assay. DAPG and PLT were found to display an inverse relationship in which each metabolite activates its own biosynthesis while repressing the synthesis of the other metabolite. PRN appears not to be involved in this balance. However, the microbial and plant phenolic metabolite salicylate was found to interfere with the expression of both DAPG and PLT. CONCLUSIONS: The results obtained provide evidence that P. fluorescens CHA0 may keep the antifungal compounds DAPG and PLT at a fine-tuned balance that can be affected by certain microbial and plant phenolics. SIGNIFICANCE AND IMPACT OF THE STUDY: To our knowledge, the present study is the first to use stable and unstable GFP variants to study antibiotic gene expression in a biocontrol pseudomonad. The developed reporter fusions will be a highly valuable tool to study in situ expression of this bacterial biocontrol trait on plant roots, i.e. at the site of pathogen suppression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polarized epithelia are fundamental to multicellular life. In animal epithelia, conserved junctional complexes establish membrane diffusion barriers, cellular adherence and sealing of the extracellular space. Plant cellular barriers are of independent evolutionary origin. The root endodermis strongly resembles a polarized epithelium and functions in nutrient uptake and stress resistance. Its defining features are the Casparian strips, belts of specialized cell wall material that generate an extracellular diffusion barrier. The mechanisms localizing Casparian strips are unknown. Here we identify and characterize a family of transmembrane proteins of previously unknown function. These 'CASPs' (Casparian strip membrane domain proteins) specifically mark a membrane domain that predicts the formation of Casparian strips. CASP1 displays numerous features required for a constituent of a plant junctional complex: it forms complexes with other CASPs; it becomes immobile upon localization; and it sediments like a large polymer. CASP double mutants display disorganized Casparian strips, demonstrating a role for CASPs in structuring and localizing this cell wall modification. To our knowledge, CASPs are the first molecular factors that are shown to establish a plasma membrane and extracellular diffusion barrier in plants, and represent a novel way of epithelial barrier formation in eukaryotes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural rubber, obtained almost exclusively from the Para rubber tree (Hevea brasiliensis), is a unique biopolymer of strategic importance that, in many of its most significant applications, cannot be replaced by synthetic rubber alternatives. Several pressing motives lead to the search for alternative sources of natural rubber. These include increased evidence of allergenic reactions to Hevea rubber, the danger that the fungal pathogen Microcyclus ulei, causative agent of South American Leaf Blight (SALB), might spread to Southeast Asia, which would severely disrupt rubber production, potential shortages of supply due to increasing demand and changes in land use, and a general trend towards the replacement of petroleum-derived chemicals with renewables. Two plant species have received considerable attention as potential alternative sources of natural rubber: the Mexican shrub Guayule (Parthenium argentatum Gray) and the Russian dandelion (Taraxacum koksaghyz). This review will summarize the current production methods and applications of natural rubber (dry rubber and latex), the threats to the production of natural rubber from the rubber tree, and describe the current knowledge of the production of natural rubber from guayule and Russian dandelion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deletion or substitution of the serine-rich N-terminal stretch of grass phytochrome A (phyA) has repeatedly been shown to yield a hyperactive photoreceptor when expressed under the control of a constitutive promoter in transgenic tobacco or Arabidopsis seedlings retaining their native phyA. These observations have lead to the proposal that the serine-rich region is involved in negative regulation of phyA signaling. To re-evaluate this conclusion in a more physiological context we produced transgenic Arabidopsis seedlings of the phyA-null background expressing Arabidopsis PHYA deleted in the sequence corresponding to amino acids 6-12, under the control of the native PHYA promoter. Compared to the transgenic seedlings expressing wild-type phyA, the seedlings bearing the mutated phyA showed normal responses to pulses of far-red (FR) light and impaired responses to continuous FR light. In yeast two-hybrid experiments, deleted phyA interacted normally with FHY1 and FHL, which are required for phyA accumulation in the nucleus. Immunoblot analysis showed reduced stability of deleted phyA under continuous red or FR light. The reduced physiological activity can therefore be accounted for by the enhanced destruction of the mutated phyA. These findings do not support the involvement of the serine-rich region in negative regulation but they are consistent with a recent report suggesting that phyA turnover is regulated by phosphorylation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

No impact of Bt soybean that express Cry1Ac protein on biological traits of Euschistus heros (Hemiptera, Pentatomidae) and its egg parasitoid Telenomus podisi (Hymenoptera, Platygastridae). Biological traits of the stink bug Euschistus heros and its main biological control agent Telenomus podisi were evaluated under controlled environmental conditions (25 ± 2ºC; 60 ± 10% RH; and 14/10 h photoperiod) by placing first instar nymphs into Petri dishes with pods originating from two soybean isolines (Bt-soybean MON 87701 × MON 89788, which expresses the Cry1Ac protein, and its near non-Bt isoline A5547) where they remained until the adult stage. Due to gregarious behavior exhibited by first instar nymphs, they were individualized only when at the second instar. Adults were separated by sex and weighed, and pronotum width of each individual was subsequently measured. They were placed into plastic boxes containing soybean grains of the same soybean isoline as food source. Egg viability and female fecundity were assessed in adult individuals. Adult females of T. podisi (up to 24h old) were placed with eggs of E. heros from mothers reared on both soybean isolines. Nymphal development time, insect weight, pronotum width, sex ratio, female fecundity, and egg viability (% emergence) of Euschistus heros did not differ between treatments. Eggto-adult development time, female longevity, sex ratio, and percentage of parasitized eggs were not impacted by the Bt-soybean (expressing Cry1Ac protein). Results indicate that the Bt-soybean, MON 87701 × MON 89788, has no direct significant impact on the two studied species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crushed seeds of the Moringa oleifera tree have been used traditionally as natural flocculants to clarify drinking water. We previously showed that one of the seed peptides mediates both the sedimentation of suspended particles such as bacterial cells and a direct bactericidal activity, raising the possibility that the two activities might be related. In this study, the conformational modeling of the peptide was coupled to a functional analysis of synthetic derivatives. This indicated that partly overlapping structural determinants mediate the sedimentation and antibacterial activities. Sedimentation requires a positively charged, glutamine-rich portion of the peptide that aggregates bacterial cells. The bactericidal activity was localized to a sequence prone to form a helix-loop-helix structural motif. Amino acid substitution showed that the bactericidal activity requires hydrophobic proline residues within the protruding loop. Vital dye staining indicated that treatment with peptides containing this motif results in bacterial membrane damage. Assembly of multiple copies of this structural motif into a branched peptide enhanced antibacterial activity, since low concentrations effectively kill bacteria such as Pseudomonas aeruginosa and Streptococcus pyogenes without displaying a toxic effect on human red blood cells. This study thus identifies a synthetic peptide with potent antibacterial activity against specific human pathogens. It also suggests partly distinct molecular mechanisms for each activity. Sedimentation may result from coupled flocculation and coagulation effects, while the bactericidal activity would require bacterial membrane destabilization by a hydrophobic loop.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the plant-beneficial soil bacterium Pseudomonas fluorescens CHA0, the production of biocontrol factors (antifungal secondary metabolites and exoenzymes) is controlled at a posttranscriptional level by the GacS/GacA signal transduction pathway involving RNA-binding protein RsmA as a key regulatory element. This protein is assumed to bind to the ribosome-binding site of target mRNAs and to block their translation. RsmA-mediated repression is relieved at the end of exponential growth by two GacS/GacA-controlled regulatory RNAs RsmY and RsmZ, which bind and sequester the RsmA protein. A gene (rsmE) encoding a 64-amino-acid RsmA homolog was identified and characterized in strain CHA0. Overexpression of rsmE strongly reduced the expression of target genes (hcnA, for a hydrogen cyanide synthase subunit; aprA, for the main exoprotease; and phlA, for a component of 2,4-diacetylphloroglucinol biosynthesis). Single null mutations in either rsmA or rsmE resulted in a slight increase in the expression of hcnA, aprA, and phlA. By contrast, an rsmA rsmE double mutation led to strongly increased and advanced expression of these target genes and completely suppressed a gacS mutation. Both the RsmE and RsmA levels increased with increasing cell population densities in strain CHA0; however, the amount of RsmA showed less variability during growth. Expression of rsmE was controlled positively by GacA and negatively by RsmA and RsmE. Mobility shift assays demonstrated specific binding of RsmE to RsmY and RsmZ RNAs. The transcription and stability of both regulatory RNAs were strongly reduced in the rsmA rsmE double mutant. In conclusion, RsmA and RsmE together account for maximal repression in the GacS/GacA cascade of strain CHA0.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of plant-beneficial pseudomonads provides a promising alternative to chemical pest management in agriculture. The fact that Pseudomonas fluorescens CHA0 and Pf-5, both well-known biocontrol agents of fungal root diseases, exhibit also potent insecticidal activity is of particular interest, as these plant-beneficial bacteria naturally colonize the rhizosphere of important crop plants. Insecticidal activity in these strains depends on a novel locus encoding the production of a protein toxin termed Fit (for P. fluorescens insecticidal toxin). To gain a better understanding of the ecological relevance of the Pseudomonas anti-insect activity, we have begun to investigate the occurrence and molecular diversity of the Fit toxin genes among root-associated pseudomonads. To this end, we have screened a large world-wide collection of fluorescent Pseudomonas sp. isolated from the roots of different plant species using molecular fingerprinting techniques. The strains are already well characterized for exoproduct patterns and disease-suppressive ability and are currently being tested for insecticidal activity in a greater wax moth larvae assay system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The nuclear receptors are a large family of eukaryotic transcription factors that constitute major pharmacological targets. They exert their combinatorial control through homotypic heterodimerisation. Elucidation of this dimerisation network is vital in order to understand the complex dynamics and potential cross-talk involved. RESULTS: Phylogeny, protein-protein interactions, protein-DNA interactions and gene expression data have been integrated to provide a comprehensive and up-to-date description of the topology and properties of the nuclear receptor interaction network in humans. We discriminate between DNA-binding and non-DNA-binding dimers, and provide a comprehensive interaction map, that identifies potential cross-talk between the various pathways of nuclear receptors. CONCLUSION: We infer that the topology of this network is hub-based, and much more connected than previously thought. The hub-based topology of the network and the wide tissue expression pattern of NRs create a highly competitive environment for the common heterodimerising partners. Furthermore, a significant number of negative feedback loops is present, with the hub protein SHP [NR0B2] playing a major role. We also compare the evolution, topology and properties of the nuclear receptor network with the hub-based dimerisation network of the bHLH transcription factors in order to identify both unique themes and ubiquitous properties in gene regulation. In terms of methodology, we conclude that such a comprehensive picture can only be assembled by semi-automated text-mining, manual curation and integration of data from various sources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel two-component system, CbrA-CbrB, was discovered in Pseudomonas aeruginosa; cbrA and cbrB mutants of strain PAO were found to be unable to use several amino acids (such as arginine, histidine and proline), polyamines and agmatine as sole carbon and nitrogen sources. These mutants were also unable to use, or used poorly, many other carbon sources, including mannitol, glucose, pyruvate and citrate. A 7 kb EcoRI fragment carrying the cbrA and cbrB genes was cloned and sequenced. The cbrA and cbrB genes encode a sensor/histidine kinase (Mr 108 379, 983 residues) and a cognate response regulator (Mr 52 254, 478 residues) respectively. The amino-terminal half (490 residues) of CbrA appears to be a sensor membrane domain, as predicted by 12 possible transmembrane helices, whereas the carboxy-terminal part shares homology with the histidine kinases of the NtrB family. The CbrB response regulator shows similarity to the NtrC family members. Complementation and primer extension experiments indicated that cbrA and cbrB are transcribed from separate promoters. In cbrA or cbrB mutants, as well as in the allelic argR9901 and argR9902 mutants, the aot-argR operon was not induced by arginine, indicating an essential role for this two-component system in the expression of the ArgR-dependent catabolic pathways, including the aruCFGDB operon specifying the major aerobic arginine catabolic pathway. The histidine catabolic enzyme histidase was not expressed in cbrAB mutants, even in the presence of histidine. In contrast, proline dehydrogenase, responsible for proline utilization (Pru), was expressed in a cbrB mutant at a level comparable with that of the wild-type strain. When succinate or other C4-dicarboxylates were added to proline medium at 1 mM, the cbrB mutant was restored to a Pru+ phenotype. Such a succinate-dependent Pru+ property was almost abolished by 20 mM ammonia. In conclusion, the CbrA-CbrB system controls the expression of several catabolic pathways and, perhaps together with the NtrB-NtrC system, appears to ensure the intracellular carbon: nitrogen balance in P. aeruginosa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sensor kinase GacS and the response regulator GacA are members of a two-component system that is present in a wide variety of gram-negative bacteria and has been studied mainly in enteric bacteria and fluorescent pseudomonads. The GacS/GacA system controls the production of secondary metabolites and extracellular enzymes involved in pathogenicity to plants and animals, biocontrol of soilborne plant diseases, ecological fitness, or tolerance to stress. A current model proposes that GacS senses a still-unknown signal and activates, via a phosphorelay mechanism, the GacA transcription regulator, which in turn triggers the expression of target genes. The GacS protein belongs to the unorthodox sensor kinases, characterized by an autophosphorylation, a receiver, and an output domain. The periplasmic loop domain of GacS is poorly conserved in diverse bacteria. Thus, a common signal interacting with this domain would be unexpected. Based on a comparison with the transcriptional regulator NarL, a secondary structure can be predicted for the GacA sensor kinases. Certain genes whose expression is regulated by the GacS/GacA system are regulated in parallel by the small RNA binding protein RsmA (CsrA) at a posttranscriptional level. It is suggested that the GacS/GacA system operates a switch between primary and secondary metabolism, with a major involvement of posttranscriptional control mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High wheat yields require good N fertilization management. The objective of this study was to evaluate the effects of different N applications at sowing using Entec (N source with nitrification inhibitor) and urea (traditional N source) at covering, on four wheat cultivars. The experiment was conducted in a randomized block design in a factorial scheme, with four replications, at the Experimental Station of the Faculdade de Engenharia de Ilha Solteira - UNESP, on a dystrophic, epi-eutrophic alic Red Latosol with loamy texture, formerly under savannah vegetation. Four N rates (0, 60, 120, and 180 kg ha-1) were tested, applied at sowing in the case of Entec and top-dressed 40 days after plant emergence in the case of urea, and the four wheat cultivars E 21, E 22, E 42, and IAC 370. The yield of the wheat cultivars E 21 and E 42 was highest. Plant height and lodging index of cultivar E 22 were greatest, with consequently lowest grain yield. There was no significant difference between Entec (applied at sowing) and urea (top-dressed) in terms of grain yield and yield components. Nevertheless, urea resulted in a higher N leaf content, and Entec in a larger number of undeveloped spikelets. High nitrogen rates influenced the hectoliter mass negatively, affecting wheat grain quality. Grain yield increased under N rates of up to 82 kg ha-1 N, through Entec applied at sowing or top-dressed urea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two bacterial strains that amplified part of the nifH gene, RP1p and RP2p, belonging to the genus Enterobacter and Serratia, were isolated from the rhizoplane of Lupinus albescens. These bacteria are Gram-negative, rod-shaped, motile, facultative anaerobic, and fast-growing; the colonies reach diameters of 3-4 mm within 24 h of incubation at 28 ºC. The bacteria were also able to grow at temperatures as high as 40 ºC, in the presence of high (2-3 % w/v) NaCl concentrations and pH 4 -10. Strain RP1p was able to utilize 10 of 14 C sources, while RP2p utilized nine. The isolates produced siderophores and indolic compounds, but none of them was able to solubilize phosphate. Inoculation of L. albescens with RP1p and RP2p strains resulted in a significant increase in plant dry matter, indicating the plant-growth-promoting abilities of these bacteria.