290 resultados para perfuração
Resumo:
The development of oil wells drilling requires additional cares mainly if the drilling is in offshore ultra deep water with low overburden pressure gradients which cause low fracture gradients and, consequently, difficult the well drilling by the reduction of the operational window. To minimize, in the well planning phases, the difficulties faced by the drilling in those sceneries, indirect models are used to estimate fracture gradient that foresees approximate values for leakoff tests. These models generate curves of geopressures that allow detailed analysis of the pressure behavior for the whole well. Most of these models are based on the Terzaghi equation, just differentiating in the determination of the values of rock tension coefficient. This work proposes an alternative method for prediction of fracture pressure gradient based on a geometric correlation that relates the pressure gradients proportionally for a given depth and extrapolates it for the whole well depth, meaning that theses parameters vary in a fixed proportion. The model is based on the application of analytical proportion segments corresponding to the differential pressure related to the rock tension. The study shows that the proposed analytical proportion segments reaches values of fracture gradient with good agreement with those available for leakoff tests in the field area. The obtained results were compared with twelve different indirect models for fracture pressure gradient prediction based on the compacting effect. For this, a software was developed using Matlab language. The comparison was also made varying the water depth from zero (onshore wellbores) to 1500 meters. The leakoff tests are also used to compare the different methods including the one proposed in this work. The presented work gives good results for error analysis compared to other methods and, due to its simplicity, justify its possible application
Resumo:
Increase hydrocarbons production is the main goal of the oilwell industry worldwide. Hydraulic fracturing is often applied to achieve this goal due to a combination of attractive aspects including easiness and low operational costs associated with fast and highly economical response. Conventional fracturing usually involves high-flowing high-pressure pumping of a viscous fluid responsible for opening the fracture in the hydrocarbon producing rock. The thickness of the fracture should be enough to assure the penetration of the particles of a solid proppant into the rock. The proppant is driven into the target formation by a carrier fluid. After pumping, all fluids are filtered through the faces of the fracture and penetrate the rock. The proppant remains in the fracture holding it open and assuring high hydraulic conductivity. The present study proposes a different approach for hydraulic fracturing. Fractures with infinity conductivity are formed and used to further improve the production of highly permeable formations as well as to produce long fractures in naturally fractured formations. Naturally open fractures with infinite conductivity are usually encountered. They can be observed in rock outcrops and core plugs, or noticed by the total loss of circulation during drilling (even with low density fluids), image profiles, pumping tests (Mini-Frac and Mini Fall Off), and injection tests below fracturing pressure, whose flow is higher than expected for radial Darcian ones. Naturally occurring fractures are kept open by randomly shaped and placed supporting points, able to hold the faces of the fracture separate even under typical closing pressures. The approach presented herein generates infinite conductivity canal held open by artificially created parallel supporting areas positioned both horizontally and vertically. The size of these areas is designed to hold the permeable zones open supported by the impermeable areas. The England & Green equation was used to theoretically prove that the fracture can be held open by such artificially created set of horizontal parallel supporting areas. To assess the benefits of fractures characterized by infinite conductivity, an overall comparison with finite conductivity fractures was carried out using a series of parameters including fracture pressure loss and dimensionless conductivity as a function of flow production, FOI folds of increase, flow production and cumulative production as a function of time, and finally plots of net present value and productivity index
Resumo:
Many challenges have been presented in petroleum industry. One of them is the preventing of fluids influx during drilling and cementing. Gas migration can occur as result of pressure imbalance inside the well when well pressure becomes lower than gas zone pressure and in cementing operation this occurs during cement slurry transition period (solid to fluid). In this work it was developed a methodology to evaluate gas migration during drilling and cementing operations. It was considered gel strength concept and through experimental tests determined gas migration initial time. A mechanistic model was developed to obtain equation that evaluates bubble displacement through the fluid while it gels. Being a time-dependant behavior, dynamic rheological measurements were made to evaluate viscosity along the time. For drilling fluids analyzed it was verified that it is desirable fast and non-progressive gelation in order to reduce gas migration without affect operational window (difference between pore and fracture pressure). For cement slurries analyzed, the most appropriate is that remains fluid for more time below critical gel strength, maintaining hydrostatic pressure above gas zone pressure, and after that gels quickly, reducing gas migration. The model developed simulates previously operational conditions and allow changes in operational and fluids design to obtain a safer condition for well construction
Resumo:
A componente subterrânea do ciclo da água, por ser de difícil observação, constituiu sempre uma parte negligenciada desse mesmo ciclo. Com o enorme incremento da utilização da água principalmente na segunda metade do Século XX e com técnicas de perfuração cada vez mais eficazes na execução de captações de água subterrânea, registaram se as primeiras observações de declínio generalizado dos níveis freáticos, do declínio acentuado dos caudais de nascentes nessas áreas e do declínio acentuado também dos caudais dos rios abastecidos pelos caudais descarregados pelos aquíferos. Tal levou a consequências drásticas em muitas regiões do Globo, muito em particular nas regiões com forte stress hídrico ou onde as taxas de recarga já não conseguem equilibrar os caudais de exploração. Desse modo, até os especialistas em águas superficiais passaram a olhar para as águas subterrâneas de outro modo, como parte integrante do mesmo ciclo, e cuja afetação pode levar a consequências graves em caudais de rios ou armazenamento em lagos. Para poder prevenir ou combater esta situação, há uma necessidade clara de conhecer o recurso na sua globalidade, desde os limites dos aquíferos, volumetria, capacidade de armazenamento, circulação da água, sua hidroquímica e capacidade de renovação. Esta caraterização é a base para se poder depois fazer a sua gestão, que poderá levar à sua melhor proteção ou, no caso de afetação, à inversão ou remediação dos problemas que os afetam. Se no início a preocupação era não exaurir o recurso, com a finalidade de não prejudicar os abastecimentos e uso humano da água para os diversos fins, nos finais do Século XX iniciam se estudos para determinar a importância dos recursos subterrâneos para a manutenção dos ecossistemas. Desde essa altura, os estudos demonstraram que as águas subterrâneas são importantes em muitos dos ecossistemas continentais e até marinhos e são até imprescindíveis em relação à existência de alguns. Os ecossistemas dependentes de águas subterrâneas podem sê-lo em diversos graus, desde totalmente dependentes a graus de dependência variável. A nível da proteção, são considerados dois fatores fundamentais: a proteção da sua quantidade e da sua qualidade. Para tal, a nível do aquífero, a proteção em relação aos fatores químicos deverá estar centrada nas zonas de infiltração, enquanto a proteção em relação á quantidade estará associada aos aspetos da sua exploração (sobre-exploração). Em relação à proteção das captações, outro fator importante da proteção do recurso para consumo humano, a legislação europeia é já bastante rigorosa, com a definição dos perímetros de proteção das captações públicas obrigatória, mas falta ainda fazer muito trabalho no que respeita quer aos estudos dos aquíferos para uma efetiva segurança das captações, até ao efetivo cumprimento dos limites estabelecidos e ao controlo das atividades condicionadas ou banidas dentro dessas áreas. Uma gestão sustentada e equilibrada dos recursos hídricos subterrâneos é essencial para a manutenção dos fluxos naturais, permitindo, através de uma utilização racional, continuar a manter funcionais os ecossistemas de algum modo dependentes das águas subterrâneas. A nível qualitativo, a gestão do recurso deveria fazer-se através do ordenamento do território e de práticas de utilização e ocupação do solo que obviem a potencial contaminação das águas subterrâneas, situação que está ainda muito longe de suceder, pois o ordenamento do território tem ainda em pouca conta os aspetos ligados aos recursos hídricos subterrâneos. A responsabilidade dos hidrogeólogos passa também muito pela intervenção a nível da governança da água, e por passar aos políticos a mensagem sobre a importância de gestão sustentada dos recursos hídricos subterrâneos, para que o Mundo continue a poder utilizar os serviços que as águas subterrâneas fornecem não só ao Homem, como ao ambiente.
Resumo:
Neste trabalho avaliam-se e comparam-se metodologias tradicionais de prospeção e construção de captações de água subterrânea em países em vias de desenvolvimento, neste caso do Sul da Ásia (Butão, Bangladeche, Índia, Nepal e Paquistão). Faz-se uma análise às metodologias do ponto de vista geológico (diversos tipos de aquífero, litologias, graus de fracturação e alteração), mecânico (técnica das metodologias de perfuração e construção das captações), e económico (comparação dos tempos de avanço das sondagens, dos tempos de construção das captações, da produtividade das mesmas e seus custos). Conclui-se que as metodologias de prospeção low cost e tradicionais são semelhantes em âmbito e em cenário de aplicação, e que, ainda que as segundas sejam mais caras, têm custos muito menores em comparação com as convencionais. Conclui-se ainda que as metodologias convencionais de construção de captações estão pensadas para metodologias convencionais de prospeção, e que as low cost são muito semelhantes entre si; Abstract: The present work evaluates and compares traditional methods of borehole drilling and construction for water abstraction in developing countries, particularly South Asia (Bhutan, Bangladesh, India, Nepal and Pakistan). The methods are analyzed in regards to geology (types of aquifers, lithologies, massif fractures and weathering), mechanic (borehole drilling and abstraction technologies), and economic (comparing the progression in drilling and construction of boreholes, productivity and its costs) factors. It is concluded that the traditional drilling methods are similar in scope and application set, and that, though the latter are more expensive, they cost less than conventional methods. It is also concluded that conventional borehole construction is based in conventional drilling methods, and that the diverse low cost methodologies are very similar between them.