963 resultados para particulate-reinforced Al composites


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cu-based bulk metallic glass (BMG) composites containing in situ TiB particles were successfully fabricated. The reinforcing TiB particles with a size of 5-10 mu m are uniformly distributed in the amorphous matrix. The particles have a good bonding to the matrix with a reaction layer. The BMG composites exhibit an obvious ductility with a plastic strain of 2% for the 17.5 vol.% TiB sample due to the suppression of shear band propagation and the generation of multiple shear bands during compressive testing. The hardness of the materials is increased from Hv543 for monolithic BMG to Hv650 for 23.6 vol.% TiB-containing BMG composite. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The research work described in this thesis is concerned with the development of glassfibre reinforced plastics for structural uses in Civil Engineering construction. The first stage was primarily concerned with the design of GRP lamintes with structura1 properties and method of manufacture suitable for use with relatively large structural components. A cold setting, pressure moulding technique was developed which proved to be efficient in reducing the void content in the composite and minimising the exothermic effect due to curing. The effect of fibre content and fibre arrangement on strength and stiffness of the cornposite was studied and the maximum amount of' fibre content that could be reached by the adopted type of moulding technique was determined. The second stage of the project was concerned with the introduction of steel-wire "sheets" into the GRP cornposites, to take advantage of the high modulus of steel wire to improve the GRP stiffness and to reduce deformation. The experimental observations agreed reasonably well with theoretical predictions in both first and second stages of the work. The third stage was concerned with studying the stability of GRP flat rectangular plates subjected to uniaxial compression or pure shear, to simulate compression flanges or shear webs respectively. The investigation was concentrated on the effect of fibre arrangement in the plate on buckling load. The effect of the introduction of steel-wire sheets on the plate stability in compression was also investigated. The boundary conditions were chosen to be close to those usually assumed in built-up box-sections for both compression flanges and webs. The orthotropic plate and the mid-plane symmetric were used successfully in predicting the buckling load theoretically. In determining the buckling load experimentally, two methods were used. The Southwell plot method and electrical strain gauge method. The latter proved to be more reliable in predicting the buckling load than the former, especially for plates under uniaxial compression. Sample design charts for GRP plates that yield and buckle simultaneously under compression are also presented in the thesis. The final stage of the work dealt with the design and test of GRP beams. The investigation began by finding the optimum cross-section for a GRP beam. The cross-section which was developed was a thin walled corrugated section which showed higher stiffness than other cross-sections for the same cross-sectional area (i.e. box, I, and rectangular sections). A cold setting, hand layings technique was used in manufacturing these beams wbich were of nine types depending on the type of glass reinforcement employed and the arrangement of layers in the beam. The simple bending theory was used in the beam design and proved to be satisfactory in predicting the stresses and deflections. A factor of safety of 4 was chosen for design purposes and considered to be suitable for long term use under static load. Because of its relatively low modulus, GRP beams allowable deflection was limited to 1/120th of the span which was found to be adequate for design purposes. A general discussion of the behaviour of GRP composites and their place relative to the more conventional structural material was also presented in the thesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Interfaces in conventional monolithic alloys exert an important influence on fatigue and fracture behavior. In discontinuously reinforced metal matrix composites (MMCs), the role of interface is even more dominant. The interfacial is higher in MMCs and the interfaces are generally of high energy and chemically unstable. This paper reviews the factors which can affect interfacial strength in discontinuously reinforced MMCs, and the ways in which interfacial strength can be controlled. The effects of interfacial strength on fatigue crack propagation and fracture behavior are then illustrated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Carbon nanotubes (CNT) could serve as potential reinforcement for metal matrix composites for improved mechanical properties. However dispersion of carbon nanotubes (CNT) in the matrix has been a longstanding problem, since they tend to form clusters to minimize their surface area. The aim of this study was to use plasma and cold spraying techniques to synthesize CNT reinforced aluminum composite with improved dispersion and to quantify the degree of CNT dispersion as it influences the mechanical properties. Novel method of spray drying was used to disperse CNTs in Al-12 wt.% Si prealloyed powder, which was used as feedstock for plasma and cold spraying. A new method for quantification of CNT distribution was developed. Two parameters for CNT dispersion quantification, namely Dispersion parameter (DP) and Clustering Parameter (CP) have been proposed based on the image analysis and distance between the centers of CNTs. Nanomechanical properties were correlated with the dispersion of CNTs in the microstructure. Coating microstructure evolution has been discussed in terms of splat formation, deformation and damage of CNTs and CNT/matrix interface. Effect of Si and CNT content on the reaction at CNT/matrix interface was thermodynamically and kinetically studied. A pseudo phase diagram was computed which predicts the interfacial carbide for reaction between CNT and Al-Si alloy at processing temperature. Kinetic aspects showed that Al4C3 forms with Al-12 wt.% Si alloy while SiC forms with Al-23wt.% Si alloy. Mechanical properties at nano, micro and macro-scale were evaluated using nanoindentation and nanoscratch, microindentation and bulk tensile testing respectively. Nano and micro-scale mechanical properties (elastic modulus, hardness and yield strength) displayed improvement whereas macro-scale mechanical properties were poor. The inversion of the mechanical properties at different scale length was attributed to the porosity, CNT clustering, CNT-splat adhesion and Al 4C3 formation at the CNT/matrix interface. The Dispersion parameter (DP) was more sensitive than Clustering parameter (CP) in measuring degree of CNT distribution in the matrix.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Carbon nanotubes (CNT) could serve as potential reinforcement for metal matrix composites for improved mechanical properties. However dispersion of carbon nanotubes (CNT) in the matrix has been a longstanding problem, since they tend to form clusters to minimize their surface area. The aim of this study was to use plasma and cold spraying techniques to synthesize CNT reinforced aluminum composite with improved dispersion and to quantify the degree of CNT dispersion as it influences the mechanical properties. Novel method of spray drying was used to disperse CNTs in Al-12 wt.% Si pre-alloyed powder, which was used as feedstock for plasma and cold spraying. A new method for quantification of CNT distribution was developed. Two parameters for CNT dispersion quantification, namely Dispersion parameter (DP) and Clustering Parameter (CP) have been proposed based on the image analysis and distance between the centers of CNTs. Nanomechanical properties were correlated with the dispersion of CNTs in the microstructure. Coating microstructure evolution has been discussed in terms of splat formation, deformation and damage of CNTs and CNT/matrix interface. Effect of Si and CNT content on the reaction at CNT/matrix interface was thermodynamically and kinetically studied. A pseudo phase diagram was computed which predicts the interfacial carbide for reaction between CNT and Al-Si alloy at processing temperature. Kinetic aspects showed that Al4C3 forms with Al-12 wt.% Si alloy while SiC forms with Al-23wt.% Si alloy. Mechanical properties at nano, micro and macro-scale were evaluated using nanoindentation and nanoscratch, microindentation and bulk tensile testing respectively. Nano and micro-scale mechanical properties (elastic modulus, hardness and yield strength) displayed improvement whereas macro-scale mechanical properties were poor. The inversion of the mechanical properties at different scale length was attributed to the porosity, CNT clustering, CNT-splat adhesion and Al4C3 formation at the CNT/matrix interface. The Dispersion parameter (DP) was more sensitive than Clustering parameter (CP) in measuring degree of CNT distribution in the matrix.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Diamond/metal composites are very attractive materials for electronics because their excellent thermal properties make them suitable for use as heat sink elements in multifunctional electronic packaging systems. To enlarge the potential applications of these composites, current efforts are mainly focused on investigating different ways to improve the contact between metal and diamond. In the present work, a theoretical study has been carried out to determine the differences between the interfacial thermal conductance of aluminum/diamond and aluminum/graphite interfaces. Additionally, diamond particles were surface modified with oxygen to observe how it affects the quality of the diamond surface. The characterization of the surface of diamonds has been performed using different surface analysis techniques, especially x-ray photoelectron spectroscopy and temperature-programmed desorption.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper investigates the manufacturing of aluminium-boron carbide composites using the stir casting method. Mechanical and physical properties tests to obtain hardness, ultimate tensile strength (UTS) and density are performed after solidification of specimens. The results show that hardness and tensile strength of aluminium based composite are higher than monolithic metal. Increasing the volume fraction of B4C, enhances the tensile strength and hardness of the composite; however over-loading of B4C caused particle agglomeration, rejection from molten metal and migration to slag. This phenomenon decreases the tensile strength and hardness of the aluminium based composite samples cast at 800 °C. For Al-15 vol% B4C samples, the ultimate tensile strength and Vickers hardness of the samples that were cast at 1000 °C, are the highest among all composites. To predict the mechanical properties of aluminium matrix composites, two key prediction modelling methods including Neural Network learned by Levenberg-Marquardt Algorithm (NN-LMA) and Thin Plate Spline (TPS) models are constructed based on experimental data. Although the results revealed that both mathematical models of mechanical properties of Al-B4C are reliable with a high level of accuracy, the TPS models predict the hardness and tensile strength values with less error compared to NN-LMA models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fours sets of PM10 samples were collected in three sites in SEQ from December 2002 to August 2004. Three of these sets of samples were collected by QLD EPA as a part of their regular air monitoring program at Woolloongabba, Rocklea and Eagle Farm. Half of the samples were used in this study for the analysis of water-soluble ions, which are Na+, K+, Mg2+, Ca2+, NH4 +, Cl-, NO3 -, SO4 2-, F-, Br-, NO2 -, PO4 -3 and the other half was retained by QLD EPA. The fourth set of samples was collected at Rocklea, specifically for this study. A quarter of the samples obtained from this set of samples were used to analyse water-soluble ions; a quarter of the sample was used to analyse Pb, Cu, Al, Fe, Mn and Zn; and the rests were used to analyse US EPA 16 priority PAHs. The water-soluble ions were extracted ultrasonically with water and the major watersoluble anions as well as NH4 + were analysed using IC. Na+, K+, Mg2+, Ca2+ Pb, Cu, Al, Fe, Mn and Zn were analysed using ICP-AES while PAHs were extracted by acetonitrile and analysed using HPLC. Of the analysed water-soluble ions, Cl-, NO3 -, SO4 2-, Na+, K+, Mg2+ and Ca2+ were high in concentration and determined in all the samples. F-, Br-, NO2 -, PO4 -3 and NH4 + ions were lower in concentration and determined only in some samples. Na+ and Cl- were high in all samples indicating the importance of a marine source. Principal Component Analysis (PCA) was used to examine the temporal variations of the water-soluble ions at the three sites. The results indicated that there was no major difference between the three sites. However, comparing the average concentrations of ions and Cl-/Na+ it was concluded that Woolloongabba had more marine influence than the other sites. Al, Fe and Zn were detected in all samples. Al and Fe were high in all samples indicating the significance of a source of crustal matter. Cu, Mn and Pb were in low concentrations and were determined only in some samples. The lower Pb concentrations observed in the study than in previous studies indicate that the phasing-out of leaded petrol had an appreciable impact on Pb levels in SEQ. This study reports for the first time, simultaneous data on the water-soluble, metal ion and PAH levels of PM10 aerosols in Brisbane, and provides information on the most likely sources of these chemical species. Such information can be used alongside those that already exist to formulate PM10 pollution reduction strategies for SEQ in order to protect the community from the adverse effects of PM pollution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CFRP material has been widely used to strengthen concrete structures. There is an increasing trend of using CFRP in strengthening steel structures. The bond between steel and CFRP is a key issue. Relatively less work has been done on the bond between CFRP and a curved surface which is often found in tubular structures. This paper reports a study on the bond between CFRP and steel tubes. A series of tensile tests were conducted with different bond lengths and number of layers. The types of adhesive and specimen preparation methods varied in the testing program. High modulus CFRP was used. Tests were carried out to measure the modulus and tensile strength of CFRP. Strain gages were mounted on different layers of CFRP. The stress distributions across the layers of the CFRP were established. Models were developed to estimate the maximum load for a given CFRP arrangement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon fiber reinforced polymer (CFRP) sheets have established a strong position as an effective method for innovative structural rehabilitation. However, the use of externally bonded CFRP in the repair and rehabilitation of steel structures is a relatively new technique that has the potential to improve the way structures are repaired. An important step toward understanding bond behaviour is to have an estimation of local bond stress versus slip relationship. The current study aims to establish the bond-slip model for CFRP sheets bonded to steel plate. To obtain the shear stress versus slippage relationship, a series of double strap tension type bond tests were conducted. This paper reports on the findings of the experimental studies. The strain and stress distributions measured in the specimens for two different bond lengths. The results show a preliminary bi-linear bond-slip model may be adopted for CFRP sheet bonded with steel plate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tubular members have become progressively more popular due to excellent structural properties, aesthetic appearance, corrosion and fire protection capability. However, a large number of such structures are found structurally deficient due to reduction of strength when they expose to severe environmental conditions such as marine environment, cold and hot weather. Hence strengthening and retrofitting of structural members are in high demands. In recent times Carbon Fibre Reinforced Polymers (CFRP) composites appears to be an excellent solution to enhance the load carrying capacity and serviceability of steel structures because of its superior physical and mechanical properties. However, the durability of such strengthening system under cold environmental condition has not yet been well documented to guide the engineers. This paper presents the findings of a study conducted to enhance the bond durability of CFRP strengthened steel tubular members by treating steel surface using epoxy based adhesion promoter under cold weather subjected to bending. The experimental program consisted of six number of CFRP strengthened specimens and one bare specimen. The sand blasted surface of the three specimens to be strengthened was pre-treated with MBrace primer and other three were remained untreated and then cured under ambient temperature and cold weather (3oC) for three and six months period of time. The beams were then loaded to failure under four point bending. The structural response of each specimen was predicted in terms of failure mode, failure load and mid-span deflection. The research findings show that the cold weather immersion had an adverse effect on durability of CFRP strengthened structures. Moreover, the epoxy based adhesion promoter was found to enhance the bond durability in elastic range.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aiming at the large scale numerical simulation of particle reinforced materials, the concept of local Eshelby matrix has been introduced into the computational model of the eigenstrain boundary integral equation (BIE) to solve the problem of interactions among particles. The local Eshelby matrix can be considered as an extension of the concepts of Eshelby tensor and the equivalent inclusion in numerical form. Taking the subdomain boundary element method as the control, three-dimensional stress analyses are carried out for some ellipsoidal particles in full space with the proposed computational model. Through the numerical examples, it is verified not only the correctness and feasibility but also the high efficiency of the present model with the corresponding solution procedure, showing the potential of solving the problem of large scale numerical simulation of particle reinforced materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of acid treatment, vapor grown carbon fiber (VGCF) interlayer and the angle, i.e., 0° and 90°, between the rolling stripes of an aluminum (Al) plate and the fiber direction of glass fiber reinforced plastics (GFRP) on the mode II interlaminar mechanical properties of GFRP/Al laminates were investigated. The experimental results of an end notched flexure test demonstrate that the acid treatment and the proper addition of VGCF can effectively improve the critical load and mode II fracture toughness of GFRP/Al laminates. The specimens with acid treatment and 10 g m−2 VGCF addition possess the highest mode II fracture toughness, i.e., 269% and 385% increases in the 0° and 90° specimens, respectively compared to those corresponding pristine ones. Due to the induced anisotropy by the rolling stripes on the aluminum plate, the 90° specimens possess 15.3%–73.6% higher mode II fracture toughness compared to the 0° specimens. The improvement mechanisms were explored by the observation of crack propagation path and fracture surface with optical, laser scanning and scanning electron microscopies. Moreover, finite element analyses were carried out based on the cohesive zone model to verify the experimental fracture toughness and to predict the interface shear strength between the aluminum plates and GFRP laminates.