834 resultados para optical parametric generation
Resumo:
The pulse-shaping technique has found widespread applications in nonlinear optics and material processing. Experimental research on laser-induced plasma shutter to control the 532 nm pulse width is conducted. The impacts of the total pulse output energy on pulse compression are investigated, and a useful conclusion can be drawn that there exists an optimal value of pulse energy at which the shortest output pulse of 3.23 ns can be obtained without a device for delay-time. Once the device for delay-time is employed to change the optical differences between two laser paths, the pulse width can be further shortened to 1.51 ns. In short, the 1.5-12 ns width-tunable 532 nm laser pulses have been obtained by adopting the laser-induced plasma shutter technique. (C) 2007 Elsevier GmbH. All rights reserved.
Resumo:
We report on photoinduced second-harmonic generation (SHG) in chalcogenide glasses. Fundamental and second-harmonic waves from a nanosecond pulsed Nd:YAG laser were used to induce second-order nonlinearity in chalcogenide glasses. The magnitude of SHG in 20Ge . 20As . 60S glass was 10(4) larger than that of tellurite glass with a composition of 15Nb(2)O(5) . 85TeO(2) (mol.%). Moreover, no apparent decay of photoinduced SHG in 20Ge . 20As . 60S glass was observed after optical poling at room temperature. We suggest that the large and stable value of X-(2) is due to the induced defect structures and large X-(3) of the chalcogenide glasses. (C) 2001 Optical Society of America
Resumo:
Blue frequency-upconversion fluorescence emission has been observed in Ce3+-doped Gd2SiO5 single crystals, pumped with 120-fs 800 nm IR laser pulses. The observed fluorescence emission peaks at about 440nm is due to 5d -> 4f transition of Ce3+ ions. The intensity dependence of the blue fluorescence emission on the IR excitation laser power obeys the cubic law, demonstrating three-photon absorption process. Analysis suggested that three-photon simultaneous absorption induced population inversion should be the predominant frequency upconversion mechanism. (c) 2006 Optical Society of America.
Resumo:
We report the first demonstration, to our knowledge, of the femtosecond laser operation by using a new alloyed Yb:GYSO crystal as the gain medium. With a 5 at. % Yb3+-doped sample and chirped mirrors for dispersion compensation, we obtained pulses as short as 210 fs at the center wavelength of 1093 nm. The average mode-locking power is 300 mW, and the pulse repetition frequency is 80 MHz. (C) 2008 Optical Society of America
Resumo:
4 bps/Hz 40 Gb/s carrierless amplitude and phase (CAP) modulation is investigated for next-generation datacommunication links. The 40 Gb/s link achieves double the length of a conventional NRZ scheme, despite using a low-bandwidth source. © 2011 Optical Society of America.
Resumo:
A new kind of Q switched laser, the bow tie laser is introduced. This type of laser permits large area facets at both ends so that generation of high optical powers involve low optical intensities to prevent optical damage. The incorporation of doubled tapered waveguide structure to the Q switched multicontact laser has increased the optical pulse energies and peak powers of the laser.
Resumo:
Materials with nonlinear optical properties are much sought after for ultrafast photonic applications. Mode-locked lasers can generate ultrafast pulses using saturable absorbers[1]. Currently, the dominant technology is based on semiconductor saturable absorber mirrors (SESAMs). However, narrow tuning range (tens of nm), complex fabrication and packaging limit their applications[2]. Single wall nanotubes (SWNTs) and graphene offer simpler and cost-effective solutions[1]. Broadband operation can be achieved in SWNTs using a distribution of tube diameters[1,3], or by using graphene[4-8], due to the gapless linear dispersion of Dirac electrons[8,9]. © 2011 IEEE.
Resumo:
We mode-lock a fiber oscillator with cavity length of ~1500m using nanotubes, achieving 1.55ps pulses with pulse energy up to 63nJ at 134 KHz repetition rate. © 2010 Optical Society of America.
Resumo:
Dicke superradiance from a two-section violet GaN/InGaN semiconductor laser diode is demonstrated for the first time. In the superradiance regime, optical pulses with peak powers in excess of 2.8 W and durations as short as 1.4 ps are generated at repetition rates of up to 10 MHz at the emission wavelength of 408 nm. The properties of superradiant pulse generation from these GaN/InGaN laser diodes are very similar to those reported for infrared AlGaAs/GaAs laser diodes.
Resumo:
The propagation of ultrashort pulses in a traveling wave semiconductor amplifier is considered. It is demonstrated that the effective polarization relaxation time, which determines the coherence of the interaction of pulses within the medium, strongly depends on its optical gain. As a result, it is shown that at large optical gains the coherence time can exceed the transverse relaxation time T2 by an order of magnitude, this accounting for the strong femtosecond superradiant pulse generation commonly observed in semiconductor laser structures. © 2012 Elsevier B.V. All rights reserved.
Resumo:
The generation of ultrashort optical pulses by semiconductor lasers has been extensively studied for many years. A number of methods, including gain-/Q-switching and different types of mode locking, have been exploited for the generation of picosecond and sub-picosecond pulses [1]. However, the shortest pulses produced by diode lasers are still much longer and weaker than those that are generated by advanced mode-locked solid-state laser systems [2]. On the other hand, an interesting class of devices based on superradiant emission from multiple contact diode laser structures has also been recently reported [3]. Superradiance (SR) is a transient quantum optics phenomenon based on the cooperative radiative recombination of a large number of oscillators, including atoms, molecules, e-h pairs, etc. SR in semiconductors can be used for the study of fundamental properties of e-h ensembles such as photon-mediated pairing, non-equilibrium e-h condensation, BSC-like coherent states and related phenomena. Due to the intrinsic parameters of semiconductor media, SR emission typically results in the generation of a high-power optical pulse or pulse train, where the pulse duration can be much less than 1 ps, under optimised bias conditions. Advantages of this technique over mode locking in semiconductor laser structures include potentially shorter pulsewidths and much larger peak powers. Moreover, the pulse repetition rate of mode-locked pulses is fixed by the cavity round trip time, whereas the repetition rate of SR pulses is controlled by the current bias and can be varied over a wide range. © 2012 IEEE.
Resumo:
We fabricate a saturable absorber mirror by coating a graphenefilm on an output coupler mirror. This is then used to obtain Q-switched mode-locking from a diode-pumped linear cavity channel waveguide laser inscribed in Ytterbium-doped Bismuthate Glass. The laser produces 1.06 ps pulses at ∼1039 nm, with a 1.5 GHz repetition rate, 48% slope efficiency and 202 mW average output power. This performance is due to the combination of the graphene saturable absorber and the high quality optical waveguides in the laser glass. © 2013 Optical Society of America.
Resumo:
A theoretical model of superradiant pulse generation in semiconductor laser structures is developed. It is shown that a high optical gain of the medium can overcome phase relaxation and results in a built-up superradiant state (macroscopic dipole) in an assembly of electron - hole pairs on a time scale much longer than the characteristic polarisation relaxation time T2. A criterion of the superradiance generation is the condition acmT2 > 1, where α is the gain coefficient and cm is the speed of light in the medium. The theoretical model describes both qualitatively and quantitatively the author's own experimental results.