962 resultados para opportunistic fungal infection
Resumo:
Today’s evolving networks are experiencing a large number of different attacks ranging from system break-ins, infection from automatic attack tools such as worms, viruses, trojan horses and denial of service (DoS). One important aspect of such attacks is that they are often indiscriminate and target Internet addresses without regard to whether they are bona fide allocated or not. Due to the absence of any advertised host services the traffic observed on unused IP addresses is by definition unsolicited and likely to be either opportunistic or malicious. The analysis of large repositories of such traffic can be used to extract useful information about both ongoing and new attack patterns and unearth unusual attack behaviors. However, such an analysis is difficult due to the size and nature of the collected traffic on unused address spaces. In this dissertation, we present a network traffic analysis technique which uses traffic collected from unused address spaces and relies on the statistical properties of the collected traffic, in order to accurately and quickly detect new and ongoing network anomalies. Detection of network anomalies is based on the concept that an anomalous activity usually transforms the network parameters in such a way that their statistical properties no longer remain constant, resulting in abrupt changes. In this dissertation, we use sequential analysis techniques to identify changes in the behavior of network traffic targeting unused address spaces to unveil both ongoing and new attack patterns. Specifically, we have developed a dynamic sliding window based non-parametric cumulative sum change detection techniques for identification of changes in network traffic. Furthermore we have introduced dynamic thresholds to detect changes in network traffic behavior and also detect when a particular change has ended. Experimental results are presented that demonstrate the operational effectiveness and efficiency of the proposed approach, using both synthetically generated datasets and real network traces collected from a dedicated block of unused IP addresses.
Resumo:
Analysis by enzyme-linked immunosorbent assay showed that Rice tungro bacilliform virus (RTBV) accumulated in a cyclic pattern from early to late stages of infection in tungro-susceptible variety, Taichung Native 1 (TN1), and resistant variety, Balimau Putih, singly infected with RTBV or co-infected with RTBV+Rice tungro spherical virus (RTSV). These changes in virus accumulation resulted in differences in RTBV levels and incidence of infection. The virus levels were expressed relative to those of the susceptible variety and the incidence of infection was assessed at different weeks after inoculation. At a particular time point, RTBV levels in TN1 or Balimau Putih singly infected with RTBV were not significantly different from the virus level in plants co-infected with RTBV+RTSV. The relative RTBV levels in Balimau Putih either singly infected with RTBV or co-infected with RTBV+RTSV were significantly lower than those in TN1. The incidence of RTBV infection varied at different times in Balimau Putih but not in TN1, and to determine the actual infection, the number of plants that became infected at least once anytime during the 4wk observation period was considered. Considering the changes in RTBV accumulation, new parameters for analyzing RTBV resistance were established. Based on these parameters, Balimau Putih was characterized having resistance to virus accumulation although the actual incidence of infection was >75%.
Resumo:
Objective.To estimate the excess length of stay in an intensive care unit (ICU) due to a central line–associated bloodstream infection (CLABSI), using a multistate model that accounts for the timing of infection. Design.A cohort of 3,560 patients followed up for 36,806 days in ICUs. Setting.Eleven ICUs in 3 Latin American countries: Argentina, Brazil, and Mexico. Patients.All patients admitted to the ICU during a defined time period with a central line in place for more than 24 hours. Results.The average excess length of stay due to a CLABSI increased in 10 of 11 ICUs and varied from −1.23 days to 4.69 days. A reduction in length of stay in Mexico was probably caused by an increased risk of death due to CLABSI, leading to shorter times to death. Adjusting for patient age and Average Severity of Illness Score tended to increase the estimated excess length of stays due to CLABSI. Conclusions.CLABSIs are associated with an excess length of ICU stay. The average excess length of stay varies between ICUs, most likely because of the case‐mix of admissions and differences in the ways that hospitals deal with infections.
Resumo:
In this issue Burns et al. report an estimate of the economic loss to Auckland City Hospital from cases of healthcare-associated bloodstream infection. They show that patients with infection stay longer in hospital and this must impose an opportunity cost because beds are blocked. Harder to measure costs fall on patients, their families and non-acute health services. Patients face some risk of dying from the infection.
Resumo:
Chlamydia trachomatis is an obligate intracellular bacterial pathogen that infects the genital and ocular mucosa of humans, causing infections that can lead to pelvic inflammatory disease, infertility, and blinding trachoma. C. pneumoniae is a respiratory pathogen that is the cause of 12–15% of community-acquired pneumonia. Both chlamydial species were believed to be restricted to the epithelia of the genital, ocular, and respiratory mucosa; however, increasing evidence suggests that both these pathogens can be isolated from peripheral blood of both healthy individuals and patients with inflammatory conditions such as coronary artery disease and asthma. Chlamydia can also be isolated from brain tissues of patients with degenerative neurological disorders such as Alzheimer’s disease and multiple sclerosis, and also from certain lymphomas. An increasing number of in vitro studies suggest that some chlamydial species can infect immune cells, at least at low levels. These infections may alter immune cell function in a way that promotes chlamydial persistence in the host and contributes to the progression of several chronic inflammatory diseases. In this paper, we review the evidence for the growth of Chlamydia in immune cells, particularly monocytes/macrophages and dendritic cells, and describe how infection may affect the function of these cells.
Resumo:
PROBLEM Chlamydia trachomatis is a significant worldwide health problem, and the often-asymptomatic disease can result in infertility. To develop a successful vaccine, a complete understanding of the immune response to chlamydial infection and development of genital tract pathology is required. METHOD OF STUDY We utilized the murine genital model of chlamydial infection. Mice were immunized with chlamydial major outer membrane protein, and vaginal lavage was assessed for the presence of neutralizing antibodies. These samples were then pre-incubated with Chlamydia muridarum and administered to the vaginal vaults of immune-competent female BALB/c mice to determine the effect on infection. RESULTS The administration of C. muridarum in conjunction with neutralizing antibodies reduced the numbers of mice infected, but a surprising finding was that this accelerated the development of severe oviduct pathology. CONCLUSION Antibodies play an under-recognized role in chlamydial infection and pathology development, which possibly involves interaction with Th1 immunity.
Resumo:
Erythromycin is the standard antibiotic used for treatment of Ureaplasma species during 3 pregnancy; however, maternally administered erythromycin may be ineffective at eliminating 4 intra-amniotic ureaplasma infections. We asked if erythromycin would eradicate intra-amniotic 5 ureaplasma infections in pregnant sheep. At 50 days of gestation (d, term=150d) pregnant ewes 6 received intra-amniotic injections of erythromycin-sensitive U. parvum serovar 3 (n=16) or 10B 7 medium (n=16). At 100d, amniocentesis was performed; five fetal losses (ureaplasma group: 8 n=4; 10B group: n=1) had occurred by this time. Remaining ewes were allocated into treatment 9 subgroups: medium only (M, n=7); medium and erythromycin (M/E, n=8); ureaplasma only (Up, 10 n=6) or ureaplasma and erythromycin (Up/E, n=6). Erythromycin was administered intra11 muscularly (500 mg), eight-hourly for four days (100d-104d). Amniotic fluid samples were 12 collected at 105d. At 125d preterm fetuses were surgically delivered and specimens were 13 collected for culture and histology. Erythromycin was quantified in amniotic fluid by liquid 14 chromatography-mass spectrometry. Ureaplasmas were isolated from the amniotic fluid, 15 chorioamnion and fetal lung of animals from the Up and Up/E groups, however, the numbers of 16 U. parvum recovered were not different between these groups. Inflammation in the 17 chorioamnion, cord and fetal lung was increased in ureaplasma-exposed animals compared to 18 controls, but was not different between the Up and Up/E groups. Erythromycin was detected in 19 amniotic fluid samples, although concentrations were low (<10-76 ng/mL). This study 20 demonstrates that maternally administered erythromycin does not eradicate chronic, intra- amniotic ureaplasma infections or improve fetal outcomes in an ovine model, potentially due to 22 the poor placental passage of erythromycin.
Resumo:
We present a spatiotemporal mathematical model of chlamydial infection, host immune response and spatial movement of infectious particles. The re- sulting partial differential equations model both the dynamics of the infection and changes in infection profile observed spatially along the length of the host genital tract. This model advances previous chlamydia modelling by incorporating spatial change, which we also demonstrate to be essential when the timescale for movement of infectious particles is equal to, or shorter than, the developmental cycle timescale. Numerical solutions and model analysis are carried out, and we present a hypothesis regarding the potential for treatment and prevention of infection by increasing chlamydial particle motility.
Resumo:
The development of vaccines to combat pathogens that infect across mucosal surfaces has been a major goal of vaccine research. Successful mucosal vaccination requires the co-administration of adjuvants that can overcome the state of immune tolerance normally associated with mucosal application of proteins. In the case of oral immunization, delivery systems are also required to protect vaccine antigens against destruction by gastric pH and digestive enzymes. Furthermore, adjuvants used for mucosal delivery must be free of neurotoxic effects like those induced by the commonly used experimental mucosal adjuvant cholera toxin. Maintenance of the "cold chain" is also essential for the effectiveness of any vaccine and adjuvants/delivery systems that enhance the stability of a vaccine would offer a significant advantage. Needle-free methods of vaccination that induce protective immunity at multiple mucosal surfaces are also desirable for rapid vaccination of large populations. In the present study we show that transcutaneous immunization (TCI) using Lipid C, a novel lipid-based matrix originally developed for oral immunization, containing soluble Helicobacter sonicate significantly reduces the gastric bacterial burden in mice following gastric challenge with live Helicobacter pylori. Protection is associated with the production of splenic gamma interferon and gastric IgA and was achieved without the co-administration of potent and potentially toxic adjuvants, although protection was further enhanced by inclusion of CpG-ODN and cholera toxin in the lipid delivery system.