940 resultados para one-dimensional theory


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dans ce travail, j’étudierai principalement un modèle abélien de Higgs en 2+1 dimensions, dans lequel un champ scalaire interagit avec un champ de jauge. Des défauts topologiques, nommés vortex, sont créés lorsque le potentiel possède un minimum brisant spontanément la symétrie U(1). En 3+1 dimensions, ces vortex deviennent des défauts à une dimension. Ils ap- paraissent par exemple en matière condensée dans les supraconducteurs de type II comme des lignes de flux magnétique. J’analyserai comment l’énergie des solutions statiques dépend des paramètres du modèle et en particulier du nombre d’enroulement du vortex. Pour le choix habituel de potentiel (un poly- nôme quartique dit « BPS »), la relation entre les masses des deux champs mène à deux types de comportements : type I si la masse du champ de jauge est plus grande que celle du champ sca- laire et type II inversement. Selon le cas, la dépendance de l’énergie au nombre d’enroulement, n, indiquera si les vortex auront tendance à s’attirer ou à se repousser, respectivement. Lorsque le flux emprisonné est grand, les vortex présentent un profil où la paroi est mince, permettant certaines simplifications dans l’analyse. Le potentiel, un polynôme d’ordre six (« non-BPS »), est choisi tel que le centre du vortex se trouve dans le vrai vide (minimum absolu du potentiel) alors qu’à l’infini le champ scalaire se retrouve dans le faux vide (minimum relatif du potentiel). Le taux de désintégration a déjà été estimé par une approximation semi-classique pour montrer l’impact des défauts topologiques sur la stabilité du faux vide. Le projet consiste d’abord à établir l’existence de vortex classi- quement stables de façon numérique. Puis, ma contribution fut une analyse des paramètres du modèle révélant le comportement énergétique de ceux-ci en fonction du nombre d’enroulement. Ce comportement s’avèrera être différent du cas « BPS » : le ratio des masses ne réussit pas à décrire le comportement observé numériquement.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dans cette thèse, nous présentons quelques analyses théoriques récentes ainsi que des observations expérimentales de l’effet tunnel quantique macroscopique et des tran- sitions de phase classique-quantique dans le taux d’échappement des systèmes de spins élevés. Nous considérons les systèmes de spin biaxial et ferromagnétiques. Grâce à l’approche de l’intégral de chemin utilisant les états cohérents de spin exprimés dans le système de coordonnées, nous calculons l’interférence des phases quantiques et leur distribution énergétique. Nous présentons une exposition claire de l’effet tunnel dans les systèmes antiferromagnétiques en présence d’un couplage d’échange dimère et d’une anisotropie le long de l’axe de magnétisation aisé. Nous obtenons l’énergie et la fonc- tion d’onde de l’état fondamentale ainsi que le premier état excité pour les systèmes de spins entiers et demi-entiers impairs. Nos résultats sont confirmés par un calcul utilisant la théorie des perturbations à grand ordre et avec la méthode de l’intégral de chemin qui est indépendant du système de coordonnées. Nous présentons aussi une explica- tion claire de la méthode du potentiel effectif, qui nous laisse faire une application d’un système de spin quantique vers un problème de mécanique quantique d’une particule. Nous utilisons cette méthode pour analyser nos modèles, mais avec la contrainte d’un champ magnétique externe ajouté. La méthode nous permet de considérer les transitions classiques-quantique dans le taux d’échappement dans ces systèmes. Nous obtenons le diagramme de phases ainsi que les températures critiques du passage entre les deux régimes. Nous étendons notre analyse à une chaine de spins d’Heisenberg antiferro- magnétique avec une anisotropie le long d’un axe pour N sites, prenant des conditions frontière périodiques. Pour N paire, nous montrons que l’état fondamental est non- dégénéré et donné par la superposition des deux états de Néel. Pour N impair, l’état de Néel contient un soliton, et, car la position du soliton est indéterminée, l’état fondamen- tal est N fois dégénéré. Dans la limite perturbative pour l’interaction d’Heisenberg, les fluctuations quantiques lèvent la dégénérescence et les N états se réorganisent dans une bande. Nous montrons qu’à l’ordre 2s, où s est la valeur de chaque spin dans la théorie des perturbations dégénérées, la bande est formée. L’état fondamental est dégénéré pour s entier, mais deux fois dégénéré pour s un demi-entier impair, comme prévu par le théorème de Kramer

Relevância:

90.00% 90.00%

Publicador:

Resumo:

L’apport disproportionné aux taux de criminalité des membres des gangs de rue est, nul doute, une proposition empirique robuste. De nombreuses études ont conclu que l’association aux gangs de rue est un facteur de risque supplémentaire à celui que constitue déjà la fréquentation de pairs délinquants au nombre des meilleurs prédicteurs de la délinquance avec les antécédents criminels et les traits antisociaux de la personnalité. Pourtant, la contribution spécifique de l’association aux gangs de rue à l’explication de la délinquance est largement méconnue. Au nombre des variables les plus souvent citées pour l’expliquer figure néanmoins le concept de l’adhésion à la culture de gang qui n’a toutefois jamais été spécifiquement opérationnalisé. Le but de la thèse est d’étudier la contribution spécifique de l’adhésion d’un contrevenant à la culture des gangs de rue à l’explication de la délinquance. Plus précisément, elle a comme objectifs de définir la culture des gangs de rue, d’opérationnaliser l’adhésion à la culture des gangs de rue, d’examiner la fidélité de la mesure de l’adhésion à la culture de gang et d’étudier sa relation avec la nature, la variété et la fréquence des conduites délinquantes de contrevenants placés sous la responsabilité des centres jeunesse et des services correctionnels du Québec. Trois articles scientifiques, auxquels un chapitre régulier est joint, ont servi la démonstration de la thèse. D’abord, le premier article présente les démarches relatives au développement de la première Mesure de l’adhésion à la culture de gang, la MACg. Plus précisément, l’article présente la recension des écrits qui a permis de proposer une première définition de la culture de gang et d’opérationnaliser le concept. Il fait aussi état de la démarche de la validation de la pertinence de son contenu et des données préliminaires qui révèlent la très bonne cohérence interne de la MACg. Cette première étude est suivie de la présentation, dans le cadre d’un chapitre régulier, des résultats de l’examen de la cotation des principaux indicateurs de la culture de gang. Cette démarche constitue un complément nécessaire à l’examen de la validité apparente de la MACg. Les résultats révèlent des degrés de concordance très satisfaisants entre les observations de divers professionnels des centres jeunesse et des services correctionnels du Québec qui ont été invités à coter les indicateurs de la culture de gang à partir de deux histoires fictives d’un contrevenant mineur et d’un second d’âge adulte. Puis, le deuxième article présente les résultats d’un premier examen de la fidélité de la MACg à l’aide du modèle de Rasch de la Théorie de la réponse aux items. Ses résultats soutiennent l’unidimensionnalité de la MACg et sa capacité à distinguer des groupes d’items et de personnes le long d’un continuum de gravité d’adhésion à la culture de gang. Par contre, le fonctionnement différentiel et le mauvais ajustement de certains items sont observés, ainsi que l’inadéquation de la structure de réponses aux items (de type Likert) privilégiée lors de l’élaboration de la MACg. Une version réaménagée de cette dernière est donc proposée. Enfin, le troisième et dernier article présente les résultats de l’examen de la relation entre la délinquance et l’adhésion d’un contrevenant à la culture de gang telle que mesurée par la MACg. Les résultats soutiennent l’apport unique de l’adhésion d’un contrevenant à la culture de gang à la diversité et à la fréquence des conduites délinquantes auto-rapportées par des contrevenants placés sous la responsabilité des centres jeunesse et des services correctionnels du Québec. Le score à l’échelle originale et réaménagée de la MACg s’avère, d’ailleurs, un facteur explicatif plus puissant que l’âge, la précocité criminelle, les pairs délinquants et la psychopathie au nombre des meilleurs prédicteurs de la délinquance. L’étude met aussi en lumière l’étroite relation entre une forte adhésion à la culture de gang et la présence marquée de traits psychopathiques annonciatrice de problèmes particulièrement sérieux. Malgré ses limites, la thèse contribuera significativement aux développements des bases d’un nouveau modèle explicatif de l’influence de l’association aux gangs de rue sur les conduites des personnes. La MACg pourra aussi servir à l’évaluation des risques des hommes contrevenants placés sous la responsabilité du système de justice pénale et à l’amélioration de la qualité des interventions qui leur sont dédiées.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis is a study of discrete nonlinear systems represented by one dimensional mappings.As one dimensional interative maps represent Poincarre sections of higher dimensional flows,they offer a convenient means to understand the dynamical evolution of many physical systems.It highlighting the basic ideas of deterministic chaos.Qualitative and quantitative measures for the detection and characterization of chaos in nonlinear systems are discussed.Some simple mathematical models exhibiting chaos are presented.The bifurcation scenario and the possible routes to chaos are explained.It present the results of the numerical computational of the Lyapunov exponents (λ) of one dimensional maps.This thesis focuses on the results obtained by our investigations on combinations maps,scaling behaviour of the Lyapunov characteristic exponents of one dimensional maps and the nature of bifurcations in a discontinous logistic map.It gives a review of the major routes to chaos in dissipative systems,namely, Period-doubling ,Intermittency and Crises.This study gives a theoretical understanding of the route to chaos in discontinous systems.A detailed analysis of the dynamics of a discontinous logistic map is carried out, both analytically and numerically ,to understand the route it follows to chaos.The present analysis deals only with the case of the discontinuity parameter applied to the right half of the interval of mapping.A detailed analysis for the n –furcations of various periodicities can be made and a more general theory for the map with discontinuities applied at different positions can be on a similar footing

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A numerical study is presented of the third-dimensional Gaussian random-field Ising model at T=0 driven by an external field. Standard synchronous relaxation dynamics is employed to obtain the magnetization versus field hysteresis loops. The focus is on the analysis of the number and size distribution of the magnetization avalanches. They are classified as being nonspanning, one-dimensional-spanning, two-dimensional-spanning, or three-dimensional-spanning depending on whether or not they span the whole lattice in different space directions. Moreover, finite-size scaling analysis enables identification of two different types of nonspanning avalanches (critical and noncritical) and two different types of three-dimensional-spanning avalanches (critical and subcritical), whose numbers increase with L as a power law with different exponents. We conclude by giving a scenario for avalanche behavior in the thermodynamic limit.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The study of simple chaotic maps for non-equilibrium processes in statistical physics has been one of the central themes in the theory of chaotic dynamical systems. Recently, many works have been carried out on deterministic diffusion in spatially extended one-dimensional maps This can be related to real physical systems such as Josephson junctions in the presence of microwave radiation and parametrically driven oscillators. Transport due to chaos is an important problem in Hamiltonian dynamics also. A recent approach is to evaluate the exact diffusion coefficient in terms of the periodic orbits of the system in the form of cycle expansions. But the fact is that the chaotic motion in such spatially extended maps has two complementary aspects- - diffusion and interrnittency. These are related to the time evolution of the probability density function which is approximately Gaussian by central limit theorem. It is noticed that the characteristic function method introduced by Fujisaka and his co-workers is a very powerful tool for analysing both these aspects of chaotic motion. The theory based on characteristic function actually provides a thermodynamic formalism for chaotic systems It can be applied to other types of chaos-induced diffusion also, such as the one arising in statistics of trajectory separation. It was noted that there is a close connection between cycle expansion technique and characteristic function method. It was found that this connection can be exploited to enhance the applicability of the cycle expansion technique. In this way, we found that cycle expansion can be used to analyse the probability density function in chaotic maps. In our research studies we have successfully applied the characteristic function method and cycle expansion technique for analysing some chaotic maps. We introduced in this connection, two classes of chaotic maps with variable shape by generalizing two types of maps well known in literature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

CuF2 is known to be an antiferromagnetic compound with a weak ferromagnetism due to the anisotropy of its monoclinic unit cell (Dzialoshinsky-Moriya mechanism). We investigate the magnetic ordering of this compound by means of ab initio periodic unrestricted Hartree-Fock calculations and by cluster calculations which employ state-of-the-art configuration interaction expansions and modern density functional theory techniques. The combined use of periodic and cluster models permits us to firmly establish that the antiferromagnetic order arises from the coupling of one-dimensional subunits which themselves exhibit a very small ferromagnetic coupling between Cu neighbor cations. This magnetic order could be anticipated from the close correspondence between CuF2 and rutile crystal structures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ab initio cluster model approach has been used to study the electronic structure and magnetic coupling of KCuF3 and K2CuF4 in their various ordered polytype crystal forms. Due to a cooperative Jahn-Teller distortion these systems exhibit strong anisotropies. In particular, the magnetic properties strongly differ from those of isomorphic compounds. Hence, KCuF3 is a quasi-one-dimensional (1D) nearest neighbor Heisenberg antiferromagnet whereas K2CuF4 is the only ferromagnet among the K2MF4 series of compounds (M=Mn, Fe, Co, Ni, and Cu) behaving all as quasi-2D nearest neighbor Heisenberg systems. Different ab initio techniques are used to explore the magnetic coupling in these systems. All methods, including unrestricted Hartree-Fock, are able to explain the magnetic ordering. However, quantitative agreement with experiment is reached only when using a state-of-the-art configuration interaction approach. Finally, an analysis of the dependence of the magnetic coupling constant with respect to distortion parameters is presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Als Beispiele für die vielfältigen Phänomene der Physik der Elektronen in niedrigdimensionalen Systemen wurden in dieser Arbeit das Cu(110)(2x1)O-Adsorbatsystem und die violette Li0.9Mo6O17-Bronze untersucht. Das Adsorbatsystem bildet selbstorganisierte quasi-eindimensionale Nanostrukturen auf einer Kupferoberfläche. Die Li-Bronze ist ein Material, das aufgrund seiner Kristallstruktur quasi-eindimensionale elektronische Eigenschaften im Volumen aufweist. Auf der Cu(110)(2x1)O-Oberfläche kann durch Variation der Sauerstoffbedeckung die Größe der streifenartigen CuO-Domänen geändert werden und damit der Übergang von zwei Dimensionen auf eine Dimension untersucht werden. Der Einfluss der Dimensionalität wurde anhand eines unbesetzten elektronischen Oberflächenzustandes studiert. Dessen Energieposition (untere Bandkante) verschiebt mit zunehmender Einschränkung (schmalere CuO-Streifen) zu größeren Energien hin. Dies ist ein bekannter quantenmechanischer Effekt und relativ gut verstanden. Zusätzlich wurde die Lebensdauer des Zustandes auf der voll bedeckten Oberfläche (zwei Dimensionen) ermittelt und deren Veränderung mit der Breite der CuO-Streifen untersucht. Es zeigt sich, dass die Lebensdauer auf schmaleren CuO-Streifen drastisch abnimmt. Dieses Ergebnis ist neu. Es kann im Rahmen eines Fabry-Perot-Modells als Streuung in Zustände außerhalb der CuO-Streifen verstanden werden. Außer den gerade beschriebenen Effekten war es möglich die Ladungsdichte des diskutierten Zustandes orts- und energieabhängig auf den CuO-Streifen zu studieren. Die Li0.9Mo6O17-Bronze wurde im Hinblick auf das Verhalten der elektronischen Zustandsdichte an der Fermikante untersucht. Diese Fragestellung ist besonders wegen der Quasieindimensionalität des Materials interessant. Die Messungen von STS-Spektren in der Nähe der Fermienergie zeigen, dass die Elektronen in der Li0.9Mo6O17-Bronze eine sogenannte Luttingerflüssigkeit ausbilden, die anstatt einer Fermiflüssigkeit in eindimensionalen elektronischen Systemen erwartet wird. Bisher wurde Luttingerflüssigkeitsverhalten erst bei wenigen Materialien und Systemen experimentell nachgewiesen, obschon die theoretischen Voraussagen mehr als 30 Jahre zurückliegen. Ein Charakteristikum einer Luttingerflüssigkeit ist die Abnahme der Zustandsdichte an der Fermienergie mit einem Potenzgesetz. Dieses Verhalten wurde in STS-Spektren dieser Arbeit beobachtet und quantitativ im Rahmen eines Luttingerflüssigkeitsmodells beschrieben. Auch die Temperaturabhängigkeit des Phänomens im Bereich von 5K bis 55K ist konsistent mit der Beschreibung durch eine Luttingerflüssigkeit. Generell zeigen die Untersuchungen dieser Arbeit, dass die Dimensionalität, insbesondere deren Einschränkung, einen deutlichen Einfluss auf die elektronischen Eigenschaften von Systemen und Materialien haben kann.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ausgangspunkt der Dissertation ist ein von V. Maz'ya entwickeltes Verfahren, eine gegebene Funktion f : Rn ! R durch eine Linearkombination fh radialer glatter exponentiell fallender Basisfunktionen zu approximieren, die im Gegensatz zu den Splines lediglich eine näherungsweise Zerlegung der Eins bilden und somit ein für h ! 0 nicht konvergentes Verfahren definieren. Dieses Verfahren wurde unter dem Namen Approximate Approximations bekannt. Es zeigt sich jedoch, dass diese fehlende Konvergenz für die Praxis nicht relevant ist, da der Fehler zwischen f und der Approximation fh über gewisse Parameter unterhalb der Maschinengenauigkeit heutiger Rechner eingestellt werden kann. Darüber hinaus besitzt das Verfahren große Vorteile bei der numerischen Lösung von Cauchy-Problemen der Form Lu = f mit einem geeigneten linearen partiellen Differentialoperator L im Rn. Approximiert man die rechte Seite f durch fh, so lassen sich in vielen Fällen explizite Formeln für die entsprechenden approximativen Volumenpotentiale uh angeben, die nur noch eine eindimensionale Integration (z.B. die Errorfunktion) enthalten. Zur numerischen Lösung von Randwertproblemen ist das von Maz'ya entwickelte Verfahren bisher noch nicht genutzt worden, mit Ausnahme heuristischer bzw. experimenteller Betrachtungen zur sogenannten Randpunktmethode. Hier setzt die Dissertation ein. Auf der Grundlage radialer Basisfunktionen wird ein neues Approximationsverfahren entwickelt, welches die Vorzüge der von Maz'ya für Cauchy-Probleme entwickelten Methode auf die numerische Lösung von Randwertproblemen überträgt. Dabei werden stellvertretend das innere Dirichlet-Problem für die Laplace-Gleichung und für die Stokes-Gleichungen im R2 behandelt, wobei für jeden der einzelnen Approximationsschritte Konvergenzuntersuchungen durchgeführt und Fehlerabschätzungen angegeben werden.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In dieser Arbeit werden mithilfe der Likelihood-Tiefen, eingeführt von Mizera und Müller (2004), (ausreißer-)robuste Schätzfunktionen und Tests für den unbekannten Parameter einer stetigen Dichtefunktion entwickelt. Die entwickelten Verfahren werden dann auf drei verschiedene Verteilungen angewandt. Für eindimensionale Parameter wird die Likelihood-Tiefe eines Parameters im Datensatz als das Minimum aus dem Anteil der Daten, für die die Ableitung der Loglikelihood-Funktion nach dem Parameter nicht negativ ist, und dem Anteil der Daten, für die diese Ableitung nicht positiv ist, berechnet. Damit hat der Parameter die größte Tiefe, für den beide Anzahlen gleich groß sind. Dieser wird zunächst als Schätzer gewählt, da die Likelihood-Tiefe ein Maß dafür sein soll, wie gut ein Parameter zum Datensatz passt. Asymptotisch hat der Parameter die größte Tiefe, für den die Wahrscheinlichkeit, dass für eine Beobachtung die Ableitung der Loglikelihood-Funktion nach dem Parameter nicht negativ ist, gleich einhalb ist. Wenn dies für den zu Grunde liegenden Parameter nicht der Fall ist, ist der Schätzer basierend auf der Likelihood-Tiefe verfälscht. In dieser Arbeit wird gezeigt, wie diese Verfälschung korrigiert werden kann sodass die korrigierten Schätzer konsistente Schätzungen bilden. Zur Entwicklung von Tests für den Parameter, wird die von Müller (2005) entwickelte Simplex Likelihood-Tiefe, die eine U-Statistik ist, benutzt. Es zeigt sich, dass für dieselben Verteilungen, für die die Likelihood-Tiefe verfälschte Schätzer liefert, die Simplex Likelihood-Tiefe eine unverfälschte U-Statistik ist. Damit ist insbesondere die asymptotische Verteilung bekannt und es lassen sich Tests für verschiedene Hypothesen formulieren. Die Verschiebung in der Tiefe führt aber für einige Hypothesen zu einer schlechten Güte des zugehörigen Tests. Es werden daher korrigierte Tests eingeführt und Voraussetzungen angegeben, unter denen diese dann konsistent sind. Die Arbeit besteht aus zwei Teilen. Im ersten Teil der Arbeit wird die allgemeine Theorie über die Schätzfunktionen und Tests dargestellt und zudem deren jeweiligen Konsistenz gezeigt. Im zweiten Teil wird die Theorie auf drei verschiedene Verteilungen angewandt: Die Weibull-Verteilung, die Gauß- und die Gumbel-Copula. Damit wird gezeigt, wie die Verfahren des ersten Teils genutzt werden können, um (robuste) konsistente Schätzfunktionen und Tests für den unbekannten Parameter der Verteilung herzuleiten. Insgesamt zeigt sich, dass für die drei Verteilungen mithilfe der Likelihood-Tiefen robuste Schätzfunktionen und Tests gefunden werden können. In unverfälschten Daten sind vorhandene Standardmethoden zum Teil überlegen, jedoch zeigt sich der Vorteil der neuen Methoden in kontaminierten Daten und Daten mit Ausreißern.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Slantwise convective available potential energy (SCAPE) is a measure of the degree to which the atmosphere is unstable to conditional symmetric instability (CSI). It has, until now, been defined by parcel theory in which the atmosphere is assumed to be nonevolving and balanced, that is, two-dimensional. When applying this two-dimensional theory to three-dimensional evolving flows, these assumptions can be interpreted as an implicit assumption that a timescale separation exists between a relatively rapid timescale for slantwise ascent and a slower timescale for the development of the system. An approximate extension of parcel theory to three dimensions is derived and it is shown that calculations of SCAPE based on the assumption of relatively rapid slantwise ascent can be qualitatively in error. For a case study example of a developing extratropical cyclone, SCAPE calculated along trajectories determined without assuming the existence of the timescale separation show large SCAPE values for parcels ascending from the warm sector and along the warm front. These parcels ascend into the cloud head within which there is some evidence consistent with the release of CSI from observational and model cross sections. This region of high SCAPE was not found for calculations along the relatively rapidly ascending trajectories determined by assuming the existence of the timescale separation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Multiscale modeling is emerging as one of the key challenges in mathematical biology. However, the recent rapid increase in the number of modeling methodologies being used to describe cell populations has raised a number of interesting questions. For example, at the cellular scale, how can the appropriate discrete cell-level model be identified in a given context? Additionally, how can the many phenomenological assumptions used in the derivation of models at the continuum scale be related to individual cell behavior? In order to begin to address such questions, we consider a discrete one-dimensional cell-based model in which cells are assumed to interact via linear springs. From the discrete equations of motion, the continuous Rouse [P. E. Rouse, J. Chem. Phys. 21, 1272 (1953)] model is obtained. This formalism readily allows the definition of a cell number density for which a nonlinear "fast" diffusion equation is derived. Excellent agreement is demonstrated between the continuum and discrete models. Subsequently, via the incorporation of cell division, we demonstrate that the derived nonlinear diffusion model is robust to the inclusion of more realistic biological detail. In the limit of stiff springs, where cells can be considered to be incompressible, we show that cell velocity can be directly related to cell production. This assumption is frequently made in the literature but our derivation places limits on its validity. Finally, the model is compared with a model of a similar form recently derived for a different discrete cell-based model and it is shown how the different diffusion coefficients can be understood in terms of the underlying assumptions about cell behavior in the respective discrete models.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Quantum calculations of the ground vibrational state tunneling splitting of H-atom and D-atom transfer in malonaldehyde are performed on a full-dimensional ab initio potential energy surface (PES). The PES is a fit to 11 147 near basis-set-limit frozen-core CCSD(T) electronic energies. This surface properly describes the invariance of the potential with respect to all permutations of identical atoms. The saddle-point barrier for the H-atom transfer on the PES is 4.1 kcal/mol, in excellent agreement with the reported ab initio value. Model one-dimensional and "exact" full-dimensional calculations of the splitting for H- and D-atom transfer are done using this PES. The tunneling splittings in full dimensionality are calculated using the unbiased "fixed-node" diffusion Monte Carlo (DMC) method in Cartesian and saddle-point normal coordinates. The ground-state tunneling splitting is found to be 21.6 cm(-1) in Cartesian coordinates and 22.6 cm(-1) in normal coordinates, with an uncertainty of 2-3 cm(-1). This splitting is also calculated based on a model which makes use of the exact single-well zero-point energy (ZPE) obtained with the MULTIMODE code and DMC ZPE and this calculation gives a tunneling splitting of 21-22 cm(-1). The corresponding computed splittings for the D-atom transfer are 3.0, 3.1, and 2-3 cm(-1). These calculated tunneling splittings agree with each other to within less than the standard uncertainties obtained with the DMC method used, which are between 2 and 3 cm(-1), and agree well with the experimental values of 21.6 and 2.9 cm(-1) for the H and D transfer, respectively. (C) 2008 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A finite difference scheme based on flux difference splitting is presented for the solution of the two-dimensional shallow water equations of ideal fluid flow. A linearised problem, analogous to that of Riemann for gas dynamics is defined, and a scheme, based on numerical characteristic decomposition is presented for obtaining approximate solutions to the linearised problem, and incorporates the technique of operator splitting. An average of the flow variables across the interface between cells is required, and this average is chosen to be the arithmetic mean for computational efficiency leading to arithmetic averaging. This is in contrast to usual ‘square root’ averages found in this type of Riemann solver, where the computational expense can be prohibitive. The method of upwind differencing is used for the resulting scalar problems, together with a flux limiter for obtaining a second order scheme which avoids nonphysical, spurious oscillations. An extension to the two-dimensional equations with source terms is included. The scheme is applied to the one-dimensional problems of a breaking dam and reflection of a bore, and in each case the approximate solution is compared to the exact solution of ideal fluid flow. The scheme is also applied to a problem of stationary bore generation in a channel of variable cross-section. Finally, the scheme is applied to two other dam-break problems, this time in two dimensions with one having cylindrical symmetry. Each approximate solution compares well with those given by other authors.