933 resultados para office equipment
Resumo:
UNLABELLED: BACKGROUND: Primary care, an essential determinant of health system equity, efficiency, and effectiveness, is threatened by inadequate supply and distribution of the provider workforce. The Veterans Health Administration (VHA) has been a frontrunner in the use of nurse practitioners (NPs) and physician assistants (PAs). Evaluation of the roles and impact of NPs and PAs in the VHA is critical to ensuring optimal care for veterans and may inform best practices for use of PAs and NPs in other settings around the world. The purpose of this study was to characterize the use of NPs and PAs in VHA primary care and to examine whether their patients and patient care activities were, on average, less medically complex than those of physicians. METHODS: This is a retrospective cross-sectional analysis of administrative data from VHA primary care encounters between 2005 and 2010. Patient and patient encounter characteristics were compared across provider types (PA, NP, and physician). RESULTS: NPs and PAs attend about 30% of all VHA primary care encounters. NPs, PAs, and physicians fill similar roles in VHA primary care, but patients of PAs and NPs are slightly less complex than those of physicians, and PAs attend a higher proportion of visits for the purpose of determining eligibility for benefits. CONCLUSIONS: This study demonstrates that a highly successful nationwide primary care system relies on NPs and PAs to provide over one quarter of primary care visits, and that these visits are similar to those of physicians with regard to patient and encounter characteristics. These findings can inform health workforce solutions to physician shortages in the USA and around the world. Future research should compare the quality and costs associated with various combinations of providers and allocations of patient care work, and should elucidate the approaches that maximize quality and efficiency.
Resumo:
Parallel processing techniques have been used in the past to provide high performance computing resources for activities such as fire-field modelling. This has traditionally been achieved using specialized hardware and software, the expense of which would be difficult to justify for many fire engineering practices. In this article we demonstrate how typical office-based PCs attached to a Local Area Network has the potential to offer the benefits of parallel processing with minimal costs associated with the purchase of additional hardware or software. It was found that good speedups could be achieved on homogeneous networks of PCs, for example a problem composed of ~100,000 cells would run 9.3 times faster on a network of 12 800MHz PCs than on a single 800MHz PC. It was also found that a network of eight 3.2GHz Pentium 4 PCs would run 7.04 times faster than a single 3.2GHz Pentium computer. A dynamic load balancing scheme was also devised to allow the effective use of the software on heterogeneous PC networks. This scheme also ensured that the impact between the parallel processing task and other computer users on the network was minimized.
Resumo:
Light has the greatest information carrying potential of all the perceivable interconnect mediums; consequently, optical fiber interconnects rapidly replaced copper in telecommunications networks, providing bandwidth capacity far in excess of its predecessors. As a result the modern telecommunications infrastructure has evolved into a global mesh of optical networks with VCSEL’s (Vertical Cavity Surface Emitting Lasers) dominating the short-link markets, predominately due to their low-cost. This cost benefit of VCSELs has allowed optical interconnects to again replace bandwidth limited copper as bottlenecks appear on VSR (Very Short Reach) interconnects between co-located equipment inside the CO (Central-Office). Spurred by the successful deployment in the VSR domain and in response to both intra-board backplane applications and inter-board requirements to extend the bandwidth between IC’s (Integrated Circuits), current research is migrating optical links toward board level USR (Ultra Short Reach) interconnects. Whilst reconfigurable Free Space Optical Interconnect (FSOI) are an option, they are complicated by precise line-of-sight alignment conditions hence benefits exist in developing guided wave technologies, which have been classified into three generations. First and second generation technologies are based upon optical fibers and are both capable of providing a suitable platform for intra-board applications. However, to allow component assembly, an integral requirement for inter-board applications, 3rd generation Opto-Electrical Circuit Boards (OECB’s) containing embedded waveguides are desirable. Currently, the greatest challenge preventing the deployment of OECB’s is achieving the out-of-plane coupling to SMT devices. With the most suitable low-cost platform being to integrate the optics into the OECB manufacturing process, several research avenues are being explored although none to date have demonstrated sufficient coupling performance. Once in place, the OECB assemblies will generate new reliability issues such as assembly configurations, manufacturing tolerances, and hermetic requirements that will also require development before total off-chip photonic interconnection can truly be achieved
Resumo:
Parallel processing techniques have been used in the past to provide high performance computing resources for activities such as Computational Fluid Dynamics. This is normally achieved using specialized hardware and software, the expense of which would be difficult to justify for many fire engineering practices. In this paper, we demonstrate how typical office-based PCs attached to a local area network have the potential to offer the benefits of parallel processing with minimal costs associated with the purchase of additional hardware or software. A dynamic load balancing scheme was devised to allow the effective use of the software on heterogeneous PC networks. This scheme ensured that the impact between the parallel processing task and other computer users on the network was minimized thus allowing practical parallel processing within a conventional office environment. Copyright © 2006 John Wiley & Sons, Ltd.