973 resultados para nose deformities
Resumo:
Background: Literature on scoliosis screening is vast, however because of the observational nature of available data and methodological flaws, data interpretation is often complex, leading to incomplete and sometimes, somewhat misleading conclusions. The need to propose a set of methods for critical appraisal of the literature about scoliosis screening, a comprehensive summary and rating of the available evidence appeared essential. METHODS: To address these gaps, the study aims were: i) To propose a framework for the assessment of published studies on scoliosis screening effectiveness; ii) To suggest specific questions to be answered on screening effectiveness instead of trying to reach a global position for or against the programs; iii) To contextualize the knowledge through expert panel consultation and meaningful recommendations. The general methodological approach proceeds through the following steps: Elaboration of the conceptual framework; Formulation of the review questions; Identification of the criteria for the review; Selection of the studies; Critical assessment of the studies; Results synthesis; Formulation and grading of recommendations in response to the questions. This plan follows at best GRADE Group (Grades of Recommendation, Assessment, Development and Evaluation) requirements for systematic reviews, assessing quality of evidence and grading the strength of recommendations. CONCLUSIONS: In this article, the methods developed in support of this work are presented since they may be of some interest for similar reviews in scoliosis and orthopaedic fields.
Resumo:
La scoliose idiopathique de l’adolescent (SIA) est une déformation tridimensionnelle (3D) de la colonne vertébrale. Pour la plupart des patients atteints de SIA, aucun traitement chirurgical n’est nécessaire. Lorsque la déformation devient sévère, un traitement chirurgical visant à réduire la déformation est recommandé. Pour déterminer la sévérité de la SIA, l’imagerie la plus utilisée est une radiographie postéroantérieure (PA) ou antéro-postérieure (AP) du rachis. Plusieurs indices sont disponibles à partir de cette modalité d’imagerie afin de quantifier la déformation de la SIA, dont l’angle de Cobb. La conduite thérapeutique est généralement basée sur cet indice. Cependant, les indices disponibles à cette modalité d’imagerie sont de nature bidimensionnelle (2D). Celles-ci ne décrivent donc pas entièrement la déformation dans la SIA dû à sa nature tridimensionnelle (3D). Conséquemment, les classifications basées sur les indices 2D souffrent des mêmes limitations. Dans le but décrire la SIA en 3D, la torsion géométrique a été étudiée et proposée par Poncet et al. Celle-ci mesure la tendance d’une courbe tridimensionnelle à changer de direction. Cependant, la méthode proposée est susceptible aux erreurs de reconstructions 3D et elle est calculée localement au niveau vertébral. L’objectif de cette étude est d’évaluer une nouvelle méthode d’estimation de la torsion géométrique par l’approximation de longueurs d’arcs locaux et par paramétrisation de courbes dans la SIA. Une première étude visera à étudier la sensibilité de la nouvelle méthode présentée face aux erreurs de reconstructions 3D du rachis. Par la suite, deux études cliniques vont présenter la iv torsion géométrique comme indice global et viseront à démontrer l’existence de sous-groupes non-identifiés dans les classifications actuelles et que ceux-ci ont une pertinence clinique. La première étude a évalué la robustesse de la nouvelle méthode d’estimation de la torsion géométrique chez un groupe de patient atteint de la SIA. Elle a démontré que la nouvelle technique est robuste face aux erreurs de reconstructions 3D du rachis. La deuxième étude a évalué la torsion géométrique utilisant cette nouvelle méthode dans une cohorte de patient avec des déformations de type Lenke 1. Elle a démontré qu’il existe deux sous-groupes, une avec des valeurs de torsion élevées et l’autre avec des valeurs basses. Ces deux sous-groupes possèdent des différences statistiquement significatives, notamment au niveau du rachis lombaire avec le groupe de torsion élevée ayant des valeurs d’orientation des plans de déformation maximales (PMC) en thoraco-lombaire (TLL) plus élevées. La dernière étude a évalué les résultats chirurgicaux de patients ayant une déformation Lenke 1 sous-classifiées selon les valeurs de torsion préalablement. Cette étude a pu démontrer des différences au niveau du PMC au niveau thoraco-lombaire avec des valeurs plus élevées en postopératoire chez les patients ayant une haute torsion. Ces études présentent une nouvelle méthode d’estimation de la torsion géométrique et présentent cet indice quantitativement. Elles ont démontré l’existence de sous-groupes 3D basés sur cet indice ayant une pertinence clinique dans la SIA, qui n’étaient pas identifiés auparavant. Ce projet contribue dans la tendance actuelle vers le développement d’indices 3D et de classifications 3D pour la scoliose idiopathique de l’adolescent.
Resumo:
Adolescent idiopathic scoliosis (AIS) is a deformity of the spine manifested by asymmetry and deformities of the external surface of the trunk. Classification of scoliosis deformities according to curve type is used to plan management of scoliosis patients. Currently, scoliosis curve type is determined based on X-ray exam. However, cumulative exposure to X-rays radiation significantly increases the risk for certain cancer. In this paper, we propose a robust system that can classify the scoliosis curve type from non invasive acquisition of 3D trunk surface of the patients. The 3D image of the trunk is divided into patches and local geometric descriptors characterizing the surface of the back are computed from each patch and forming the features. We perform the reduction of the dimensionality by using Principal Component Analysis and 53 components were retained. In this work a multi-class classifier is built with Least-squares support vector machine (LS-SVM) which is a kernel classifier. For this study, a new kernel was designed in order to achieve a robust classifier in comparison with polynomial and Gaussian kernel. The proposed system was validated using data of 103 patients with different scoliosis curve types diagnosed and classified by an orthopedic surgeon from the X-ray images. The average rate of successful classification was 93.3% with a better rate of prediction for the major thoracic and lumbar/thoracolumbar types.
Resumo:
Objective To determine scoliosis curve types using non invasive surface acquisition, without prior knowledge from X-ray data. Methods Classification of scoliosis deformities according to curve type is used in the clinical management of scoliotic patients. In this work, we propose a robust system that can determine the scoliosis curve type from non invasive acquisition of the 3D back surface of the patients. The 3D image of the surface of the trunk is divided into patches and local geometric descriptors characterizing the back surface are computed from each patch and constitute the features. We reduce the dimensionality by using principal component analysis and retain 53 components using an overlap criterion combined with the total variance in the observed variables. In this work, a multi-class classifier is built with least-squares support vector machines (LS-SVM). The original LS-SVM formulation was modified by weighting the positive and negative samples differently and a new kernel was designed in order to achieve a robust classifier. The proposed system is validated using data from 165 patients with different scoliosis curve types. The results of our non invasive classification were compared with those obtained by an expert using X-ray images. Results The average rate of successful classification was computed using a leave-one-out cross-validation procedure. The overall accuracy of the system was 95%. As for the correct classification rates per class, we obtained 96%, 84% and 97% for the thoracic, double major and lumbar/thoracolumbar curve types, respectively. Conclusion This study shows that it is possible to find a relationship between the internal deformity and the back surface deformity in scoliosis with machine learning methods. The proposed system uses non invasive surface acquisition, which is safe for the patient as it involves no radiation. Also, the design of a specific kernel improved classification performance.
Resumo:
3-D assessment of scoliotic deformities relies on an accurate 3-D reconstruction of bone structures from biplanar X-rays, which requires a precise detection and matching of anatomical structures in both views. In this paper, we propose a novel semiautomated technique for detecting complete scoliotic rib borders from PA-0° and PA-20° chest radiographs, by using an edge-following approach with multiple-path branching and oriented filtering. Edge-following processes are initiated from user starting points along upper and lower rib edges and the final rib border is obtained by finding the most parallel pair among detected edges. The method is based on a perceptual analysis leading to the assumption that no matter how bent a scoliotic rib is, it will always present relatively parallel upper and lower edges. The proposed method was tested on 44 chest radiographs of scoliotic patients and was validated by comparing pixels from all detected rib borders against their reference locations taken from the associated manually delineated rib borders. The overall 2-D detection accuracy was 2.64 ± 1.21 pixels. Comparing this accuracy level to reported results in the literature shows that the proposed method is very well suited for precisely detecting borders of scoliotic ribs from PA-0° and PA-20° chest radiographs.
Resumo:
In this paper, a new methodology for the prediction of scoliosis curve types from non invasive acquisitions of the back surface of the trunk is proposed. One hundred and fifty-nine scoliosis patients had their back surface acquired in 3D using an optical digitizer. Each surface is then characterized by 45 local measurements of the back surface rotation. Using a semi-supervised algorithm, the classifier is trained with only 32 labeled and 58 unlabeled data. Tested on 69 new samples, the classifier succeeded in classifying correctly 87.0% of the data. After reducing the number of labeled training samples to 12, the behavior of the resulting classifier tends to be similar to the reference case where the classifier is trained only with the maximum number of available labeled data. Moreover, the addition of unlabeled data guided the classifier towards more generalizable boundaries between the classes. Those results provide a proof of feasibility for using a semi-supervised learning algorithm to train a classifier for the prediction of a scoliosis curve type, when only a few training data are labeled. This constitutes a promising clinical finding since it will allow the diagnosis and the follow-up of scoliotic deformities without exposing the patient to X-ray radiations.
Resumo:
Study Design Retrospective study of surgical outcome. Objectives To evaluate quantitatively the changes in trunk surface deformities after scoliosis spinal surgery in Lenke 1A adolescent idiopathic scoliosis (AIS) patients and to compare it with changes in spinal measurements. Summary of Background Data Most studies documenting scoliosis surgical outcome used either radiographs to evaluate changes in the spinal curve or questionnaires to assess patients health-related quality of life. Because improving trunk appearance is a major reason for patients and their parents to seek treatment, this study focuses on postoperative changes in trunk surface deformities. Recently, a novel approach to quantify trunk deformities in a reliable, automatic, and noninvasive way has been proposed. Methods Forty-nine adolescents with Lenke 1A idiopathic scoliosis treated surgically were included. The back surface rotation and trunk lateral shift were computed on trunk surface acquisitions before and at least 6 months after surgery. We analyzed the effect of age, height, weight, curve severity, and flexibility before surgery, length of follow-up, and the surgical technique. For 25 patients with available three-dimensional (3D) spinal reconstructions, we compared changes in trunk deformities with changes in two-dimensional (2D) and 3D spinal measurements. Results The mean correction rates for the back surface rotation and the trunk lateral shift are 18% and 50%, respectively. Only the surgical technique had a significant effect on the correction rate of the back surface rotation. Direct vertebral derotation and reduction by spine translation provide a better correction of the rib hump (22% and 31% respectively) than the classic rod rotation technique (8%). The reductions of the lumbar Cobb angle and the apical vertebrae transverse rotation explain, respectively, up to 17% and 16% the reduction of the back surface rotation. Conclusions Current surgical techniques perform well in realigning the trunk; however, the correction of the deformity in the transverse plane proves to be more challenging. More analysis on the positive effect of vertebral derotation on the rib hump correction is needed. Level of evidence III.
Resumo:
Among the external manifestations of scoliosis, the rib hump, which is associated with the ribs' deformities and rotations, constitutes the most disturbing aspect of the scoliotic deformity for patients. A personalized 3-D model of the rib cage is important for a better evaluation of the deformity, and hence, a better treatment planning. A novel method for the 3-D reconstruction of the rib cage, based only on two standard radiographs, is proposed in this paper. For each rib, two points are extrapolated from the reconstructed spine, and three points are reconstructed by stereo radiography. The reconstruction is then refined using a surface approximation. The method was evaluated using clinical data of 13 patients with scoliosis. A comparison was conducted between the reconstructions obtained with the proposed method and those obtained by using a previous reconstruction method based on two frontal radiographs. A first comparison criterion was the distances between the reconstructed ribs and the surface topography of the trunk, considered as the reference modality. The correlation between ribs axial rotation and back surface rotation was also evaluated. The proposed method successfully reconstructed the ribs of the 6th-12th thoracic levels. The evaluation results showed that the 3-D configuration of the new rib reconstructions is more consistent with the surface topography and provides more accurate measurements of ribs axial rotation.
Resumo:
To ensure quality of machined products at minimum machining costs and maximum machining effectiveness, it is very important to select optimum parameters when metal cutting machine tools are employed. Traditionally, the experience of the operator plays a major role in the selection of optimum metal cutting conditions. However, attaining optimum values each time by even a skilled operator is difficult. The non-linear nature of the machining process has compelled engineers to search for more effective methods to attain optimization. The design objective preceding most engineering design activities is simply to minimize the cost of production or to maximize the production efficiency. The main aim of research work reported here is to build robust optimization algorithms by exploiting ideas that nature has to offer from its backyard and using it to solve real world optimization problems in manufacturing processes.In this thesis, after conducting an exhaustive literature review, several optimization techniques used in various manufacturing processes have been identified. The selection of optimal cutting parameters, like depth of cut, feed and speed is a very important issue for every machining process. Experiments have been designed using Taguchi technique and dry turning of SS420 has been performed on Kirlosker turn master 35 lathe. Analysis using S/N and ANOVA were performed to find the optimum level and percentage of contribution of each parameter. By using S/N analysis the optimum machining parameters from the experimentation is obtained.Optimization algorithms begin with one or more design solutions supplied by the user and then iteratively check new design solutions, relative search spaces in order to achieve the true optimum solution. A mathematical model has been developed using response surface analysis for surface roughness and the model was validated using published results from literature.Methodologies in optimization such as Simulated annealing (SA), Particle Swarm Optimization (PSO), Conventional Genetic Algorithm (CGA) and Improved Genetic Algorithm (IGA) are applied to optimize machining parameters while dry turning of SS420 material. All the above algorithms were tested for their efficiency, robustness and accuracy and observe how they often outperform conventional optimization method applied to difficult real world problems. The SA, PSO, CGA and IGA codes were developed using MATLAB. For each evolutionary algorithmic method, optimum cutting conditions are provided to achieve better surface finish.The computational results using SA clearly demonstrated that the proposed solution procedure is quite capable in solving such complicated problems effectively and efficiently. Particle Swarm Optimization (PSO) is a relatively recent heuristic search method whose mechanics are inspired by the swarming or collaborative behavior of biological populations. From the results it has been observed that PSO provides better results and also more computationally efficient.Based on the results obtained using CGA and IGA for the optimization of machining process, the proposed IGA provides better results than the conventional GA. The improved genetic algorithm incorporating a stochastic crossover technique and an artificial initial population scheme is developed to provide a faster search mechanism. Finally, a comparison among these algorithms were made for the specific example of dry turning of SS 420 material and arriving at optimum machining parameters of feed, cutting speed, depth of cut and tool nose radius for minimum surface roughness as the criterion. To summarize, the research work fills in conspicuous gaps between research prototypes and industry requirements, by simulating evolutionary procedures seen in nature that optimize its own systems.
Resumo:
The length – weight relationship and relative condition factor of the shovel nose catfish, Arius subrostratus (Valenciennes, 1840) from Champakkara backwater were studied by examination of 392 specimens collected during June to September 2008. These fishes ranged from 6 to 29 cm in total length and 5.6 to 218 g in weight. The relation between the total length and weight of Arius subrostratus is described as Log W = -1.530+2.6224 log L for males, Log W = - 2.131 + 3.0914 log L for females and Log W = - 1.742 + 2.8067 log L for sexes combined. The mean relative condition factor (Kn) values ranged from 0.75 to 1.07 for males, 0.944 to 1.407 for females and 0.96 to 1.196 for combined sexes. The length-weight relationship and relative condition factor showed that the well-being of A. subrostratus is good. The morphometric measurements of various body parts and meristic counts were recorded. The morphometric measurements were found to be non-linear and there is no significant difference observed between the two sexes. From the present investigation, the fin formula can be written as D: I, 7; P: I, 12; A: 17 – 20; C: 26 – 32. There is no change in meristic counts with the increase in body length.
Resumo:
We present a trainable system for detecting frontal and near-frontal views of faces in still gray images using Support Vector Machines (SVMs). We first consider the problem of detecting the whole face pattern by a single SVM classifer. In this context we compare different types of image features, present and evaluate a new method for reducing the number of features and discuss practical issues concerning the parameterization of SVMs and the selection of training data. The second part of the paper describes a component-based method for face detection consisting of a two-level hierarchy of SVM classifers. On the first level, component classifers independently detect components of a face, such as the eyes, the nose, and the mouth. On the second level, a single classifer checks if the geometrical configuration of the detected components in the image matches a geometrical model of a face.
Resumo:
The central challenge in face recognition lies in understanding the role different facial features play in our judgments of identity. Notable in this regard are the relative contributions of the internal (eyes, nose and mouth) and external (hair and jaw-line) features. Past studies that have investigated this issue have typically used high-resolution images or good-quality line drawings as facial stimuli. The results obtained are therefore most relevant for understanding the identification of faces at close range. However, given that real-world viewing conditions are rarely optimal, it is also important to know how image degradations, such as loss of resolution caused by large viewing distances, influence our ability to use internal and external features. Here, we report experiments designed to address this issue. Our data characterize how the relative contributions of internal and external features change as a function of image resolution. While we replicated results of previous studies that have shown internal features of familiar faces to be more useful for recognition than external features at high resolution, we found that the two feature sets reverse in importance as resolution decreases. These results suggest that the visual system uses a highly non-linear cue-fusion strategy in combining internal and external features along the dimension of image resolution and that the configural cues that relate the two feature sets play an important role in judgments of facial identity.
Resumo:
Se realizó un estudio descriptivo observacional para describir los hallazgos radiológicos pre y postoperatorios de pacientes llevados a osteotomía periacetabular tipo Ganz, según las medidas radiológicas del mismo autor, en el Instituto de Ortopedia infantil Roosevelt entre los años 2008 y 2012.
Resumo:
Introducción: la osteogénesis es una patología de origen genético caracterizada por fragilidad ósea, en su curso natural los pacientes que la padecen se enfrentan a múltiples fracturas y múltiples intervenciones quirúrgicas, este tipo de pacientes por ser de alto riesgo necesitan técnicas quirúrgicas que aumenten el tiempo entre cada intervención y que demuestren un mayor impacto en el estado funcional. Objetivo: Determinar el impacto en el estado funcional de los pacientes con osteogénesis imperfecta llevados a tratamiento quirúrgico con clavos telescopados tipo Fassier Duval. Diseño: Estudio descriptivo prospectivo en el que se incluyeron 8 pacientes con diagnóstico de osteogénesis imperfecta, llevados a tratamiento quirúrgico con clavos telescopados tipo Fassier Duval desde el 2009 al 2013 a los cuales se les realizó seguimiento menor de 1 año del post operatorio. Resultados: La respuesta encontrada fue satisfactoria en la mayoría de los pacientes analizados 6 de 8, con cercanía a un estado funcional normal; un riesgo de caída bajo, incorporación y deambulación adecuada y una valoración funcional motora gruesa con valores cercanos al 100% identificando un buen nivel de independencia funcional. Se pudo demostrar que existieron cambios en los valores de la escala y que estos fueron estadísticamente significativos con p=0,028 indicando que el aumento dichos valores en el posoperatorio están relacionados con el procedimiento quirúrgico al utilizado en este grupo de pacientes. Conclusión: El tratamiento quirúrgico con el clavo telescopado de Fassier Duval en nuestra experiencia demostró tener una mejoría en el estado funcional de los pacientes del presente estudio, por lo tanto se sugiere la posibilidad de implementar su uso según este indicado con el fin de obtener un mejor resultado quirúrgico y funcional. Palabras clave: Osteogénesis Imperfecta, Clavo de Fassier Duval, Valoración Funcional Motora
Resumo:
Introducción: La Parálisis Cerebral (PC) es la enfermedad neurológica más incapacitante en niños, su historia natural tiende al deterioro motor y funcional. Con este estudio se busca establecer sí las cirugías múltiples de miembros inferiores, en un tiempo quirúrgico, mantienen el nivel motor y funcional. Material y Método: Estudio analítico de cohortes. Se compara un grupo de pacientes sometidos a cirugías múltiples contra un grupo de pacientes no operados, en el Instituto de Ortopedia Infantil Roosevelt. Se evaluaron los pacientes con dos Laboratorios para el Análisis del Movimiento (LAM) y se midieron los desenlaces mediante el cambio en la puntuación del perfil de marcha (GPS) y el nivel funcional motor grueso (GMFCS). Resultados: 109 pacientes cumplieron con los criterios de selección, 67 pacientes fueron sometidos a cirugía y 42 pacientes no. Los pacientes operados mejoraron el GPS promedio (diferencia -1,94; p=0,002) comparado con los pacientes no operados (diferencia 1,74; p=0,001), indicando una mejoría significativa de la cinemática de la marcha. En un modelo de regresión logística predictivo, el paciente que es operado tiene una probabilidad del 78% de mantener su patrón de marcha, mientras que sí no se opera su probabilidad disminuye al 37%. El nivel funcional motor GMFCS no mostró cambios significativos entre los grupos. Discusión: Las cirugías múltiples de miembros inferiores mantienen de manera significativa el patrón de marcha en pacientes con PC. Se destaca el seguimiento de los pacientes mediante el LAM y se sugiere el uso del GPS para valorar resultados en este tipo de pacientes.