938 resultados para northern South China Sea


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A pollen record of core PC-1 from the northern Okinawa Trough, East China Sea (ECS), provides information on vegetation and climate changes since 24 cal. kaBP. A total of 103 samples were palynologically analyzed at 8 cm intervals with a time resolution of 230 a. Four pollen zones are recognized: zone I (812-715 cm, 24.2-21.1 cal. kaBP), zone II (715-451 cm, 21.1-15.2 cal. kaBP), zone III (451-251 cm, 15.2-10.8 cal. kaBP), zone IV (251-0 cm, 10.8-0.3 cal. kaBP), corresponding to Late MIS 3, Last Glacial Maximum (LGM), deglaciation and Holocene, respectively. The LGM is characterized by the dominance of herbs, mainly Artemisia, and high pollen influx, implying an open vegetation on the exposed continental shelf and a cool and dry climate. The deglaciation is a climate warming stage with Pinus percentage increased and Artemisia percentage decreased and a rapid sea-level rise. The Holocene is characterized by predominance of tree pollen with rapid increase in Castanea-Castanopsis indicating the development of mixed evergreen and deciduous broad-leaved forest and a warm, humid climate. Low pollen influx during the Holocene probably implies submergence of the continental shelf and retreat of the pollen source area. The vegetation indicated by pollen assemblage found in this upper zone is consistent with the present vegetation found in Kyushu, Japan. Originating from the humid mountain area of North Luzon of the Philippines, Tasmania and New Zealand, Phyllocladus with sporadic occurrence throughout PC-1 core probably suggests the influence of Palaeo-Kuroshio Current or intense summer monsoon. The observed changes in Pinus and Herbs percentage indicate fluctuations of the sea level, and high Pinus percentage corresponds to high sea level. Spectrum analysis of the pollen percentage record reveals many millennial-scale periodicities, such as periodicities of 6.8, 3.85 2.2, 1.6 ka.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic paper map entitled: Carte du Katay : ou, Empire de Kin, pour servir a l'histoire de Jenghiz Khan ; raportée dans l'histoire generale des voyages, tirée de l'Anglois = Kaart van Kitay, of 't Ryk der Kin, dienende tot de historie van Jenghiz Khan, uit de Engelsche in dit Bestek gebragt. ; J.V. Schley direx. It was published by Pierre de Hondt in 1749. Scale [ca. 1:1,500,000]. Covers the East China Sea and Yellow Sea regions, China, North Korea, and South Korea. Map in French and Dutch. The image inside the map neatline is georeferenced to the surface of the earth and fit to the World Miller Cylindrical projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, cities and other human settlements, territorial boundaries, shoreline features, and more. Shows also the Great Wall of China and the travels of Genghis Khan. Relief shown pictorially. This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze the distribution of temperature and heat flow of the sea floor sediment in the area of East China Sea slope and West basin area of the Okinawa Trough. Based on the Sonar Buoy and OBS data, 6 velocity layers are recognized, each of which has velocity of 1.8(1.8 similar to 2.2) km/s,2.2(2.0 similar to 2.5)km/s,2.8 (2.7 similar to 3.2)km/s,3.4 similar to 3.6km/s,4.2(4.1 similar to 4.7)km/s and 5.1km/s, respectively. The upper velocity layer of 1.8 similar to 2.2 km/s corresponds to the Quaternary sediment stratum. The layer with velocity 3.4 similar to 4.2km/s is the Pliocene sediment stratum. The area that is suitable for stable existence of gas hydrate by the temperature and pressure is 70,000km(2) about 1/10 the total area of East China Sea. The thickness of the stability zone ranges from 400m (Middle Part of Okinawa Trough) to 1100m (North and South Part of Okinawa Trough). The Quaternary and Pliocene layers are suitable for stable exitence of gas hydrate. According to the tectonic stability and heat flow, the north part and south part of the Okinawa Trough are the most perspective area for the gas hydrate explorations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A predominant sigmoidal clinoform deposit extends from the Yangtze River mouth southwards 800 kin along the Chinese coast. This clinoform is thickest (similar to 40m) between the 20 and 30 m isobaths and progressively thins offshore, reaching water depths of 60 and 90 m and distances up to 100 km offshore. Clay mineral, heavy metal, geochemical and grain-size analyses indicate that the Yangtze River is the primary source for this longshore-transported clinoform deposit. Pb-210 chronologies show the highest accumulation rates (> 3 cm/yr) occur immediately adjacent to the Yangtze subaqueous delta (north of 30 degrees N), decreasing southward alongshore and eastward offshore. The interaction of strong tides, waves, the China Coastal Current, winter storms, and offshore upwelling appear to have played important roles in trapping most Yangtze-derived sediment on the inner shelf and transporting it to the south. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An N-shape thermal front in the western South Yellow Sea (YS) in winter was detected using Advanced Very High Resolution Radiation (AVHRR) Sea Surface Temperature data and in-situ observations with a merged front-detecting method. The front, which exists from late October through early March, consists of western and eastern wings extending roughly along the northeast-southwest isobaths with a southeastward middle segment across the 20-50 m isobaths. There are north and south inflexions connecting the middle segment with the western and eastern wings, respectively. The middle segment gradually moves southwestward from November through February with its length increasing from 62 km to 107 km and the southern inflexion moving from 36.2A degrees N to 35.3A degrees N. A cold tongue is found to coexist with the N-shape front, and is carried by the coastal jet penetrating southward from the tip of the Shandong Peninsula into the western South YS as revealed by a numerical simulation. After departing from the coast, the jet flows as an anti-cyclonic recirculation below 10 m depth, trapping warmer water originally carried by the compensating Yellow Sea Warm Current (YSWC). A northwestward flowing branch of the YSWC is also found on the lowest level south of the front. The N-shape front initially forms between the cold tongue and warm water involved in the subsurface anti-cyclonical recirculation and extends upwards to the surface through vertical advection and mixing. Correlation analyses reveal that northerly and easterly winds tend to be favorable to the formation and extension of the N-shape front probably through strengthening of the coastal jet and shifting the YSWC pathway eastward, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the data analysis, this study further explores the characteristics of East Asian winter monsoon (hereafter, EAWM, for brevity) as well as the related air-sea-land system, and illustrates how and to what degree anomalous signals of the subsequent Asian summer monsoon are rooted in the preceding EAWM activity. We identified an important air-sea coupled mode, i.e., the EAWM mode illustrated in Section 3. In cold seasons, strong EAWM-related air-sea two-way interaction is responsible for the development and persistence of the SSTA pattern of EAWM mode. As a consequence, the key regions, i.e., the western Pacific and South China Sea (hereafter, SCS, for brevity), are dominated by such an SSTA pattern from the winter to the following summer. In the strong EAWM years, the deficient snow cover dominates eastern Tibetan Plateau in winter, and in spring, this anomaly pattern is further strengthened and extended to the northwestern side of Tibetan Plateau. Thus, the combined effect of strong EAWM-related SSTA and Tibetan snow cover constitutes an important factor in modulating the Asian monsoon circulation. The active role of the EAWM activity as well as the related air-sea-land interaction would, in the subsequent seasons, lead to: 1) the enhancement of SCS monsoon and related stronger rainfall; 2) the northward displacement of subtropical high during Meiyu period and the related deficient rainfall over Meiyu rainband; 3) above-normal precipitation over the regions from northern Japan to northeastern China in summer; 4) more rainfall over the Arabian Sea and Northeast India, while less rainfall over southwest India and the Bay of Bengal. The strong EAWM-related air-sea interaction shows, to some degree, precursory signals to the following Asian summer monsoon. However, the mechanism for the variability of Indian summer monsoon subsequent to the strong EAWM years remains uncertain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A hydrodynamic-thermodynamic equation set was set up to reflect the formational mechanism and evolution of the Northern Yellow (Huanghai) Sea cold water mass (NYSCWM) and its density circulation. Appropriate mathematical physical models were established by using some physical postulations. An approximate analytic solution to expound the distributions of temperature and three-dimensional current velocity, which can be used to expound the formational mechanism of the NYSCWM and its density circulation is obtained by using the theory of boundary layer and perturbational analyses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The theoretical solution of the model of the Northern Yellow (Huanghai) Sea Cold Water Mass (NYSCWM) reveals that the NYSCWM is mainly formed through the continuous temperature increase of the overwintered water body above the Northern Yellow Sea Depression (NYSD) after spring when heat is continuously conducted from the sea surface to the deeper layer. In the NYSCWM's growing period, (June-July), nonlinear vertical convection and advection effects continuously increase, and are gradually balanced by the heat diffusion effect as the temperature increases from the surface to the bottom, which leads to the formation of an intensive thermocline and lateral front. Meanwhile, the three-dimensional circulation correspondingly occurs. In the NYSCWM's entire growing period, the horizontal circulation is always in the cyclonic motion, while the vertical circulation passes through a transition from a period with the cold centre as downwelling to a period with the cold centre as upwelling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During late spring and early summer of 2005, large-scale (> 15 000 km(2)), mixed dinoflagellate blooms developed along the the coast of the East China Sea. Karenia mikimotoi was the dominant harmful algal bloom species in the first stage of the bloom (late May) and was succeeded by Prorocentrum donghaiense approximately 2 wk later. Samples were collected from different stations along both north-south and west-east transects, from the Changjiang River estuary to the south Zhejiang coast, during 3 cruises of the Chinese Ecology and Oceanography of Harmful Algal Blooms Program, before and during the bloom progression. Nitrogen isotope tracer techniques were used to measure rates of NO3-, NH4+, urea, and glycine uptake during the blooms. High inorganic nitrogen (N), but low phosphorus (P) loading from the Changjiang River led to high dissolved inorganic N:dissolved inorganic P ratios in the sampling area and indicate the development of P limitation. The rates of N-15-uptake experiments enriched with PO43- were enhanced compared to unamended samples, suggesting P limitation of the N-uptake rates. The bloom progression was related to the change in availability of both organic and inorganic N and P. Reduced N forms, especially NH4+, were preferentially taken up during the blooms, but different bloom species had different rates of uptake of organic N substrates. K mikimotoi had higher rates of urea uptake, while P. donghaiense had higher rates of glycine uptake. Changes in the availability of reduced N and the ratios of N:P in inorganic and organic forms were suggested to be important in the bloom succession. Nutrient ratios and specific uptake rates of urea were similar when compared to analogous blooms on the West Florida Shelf.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Matrix-bound phosphine (MBP) concentrations in surface sediments collected from 37 stations along the coast of China in 2006 are reported. MBP was found in all samples and the average concentration was 6.30 ng kg(-1) dry weight (dw). The distribution of MBP showed certain spatial variation characteristics with high MBP concentrations at stations near to the coast. The average concentrations of MBP in the northern Yellow Sea (NYS), the southern Yellow Sea (SYS), the northern area of East China Sea (NECS), the southern area of East China Sea (SECS), and South China Sea (SCS) were 5.57 +/- 3.78, 3.78 +/- 2.81, 5.27 +/- 3.07, 5.48 +/- 4.05 and 13.52 +/- 7.86 ng kg(-1) dw. respectively. The correlations between MBP and influencing factors, such as the sedimentary environmental characteristics (sediment type, the grain size, contents of phosphorous, organic matters and redox potential) and the aquatic environmental characteristics (temperature, salinity, depth and hydrodynamics) were studied. The results indicated that MBP was strongly influenced by various factors, such as total phosphorus (TP), organic phosphorus (OP), organic carbon (OC), the grain size and hydrodynamics, all of which not only offered reasonable interpretations for the distribution characteristics of MBP but also provided evidence to support the viewpoint that phosphine originated from OP decomposition. This work is the first comprehensive study of the distribution of MBP along the coast of China and its relationships with environmental factors which will lead to a better understanding of the phosphorus (P) biogeochemical cycle in the sea. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The long-term changes in the main tidal constituents (O1, K1, M2, N2, and S2) along the coasts of China and in adjacent seas are investigated based on 17 tide-gauge records covering the period 1954–2012. The observed 18.61 year nodal modulations of the diurnal constituents O1 and K1 are in agreement with the equilibrium tidal theory, except in the South China Sea. The observed modulations of the M2 and N2 amplitudes are smaller than theoretically predicted at the northern stations and larger at the southern stations. The discrepancies between the theoretically predicted nodal variations and the observations are discussed. The 8.85 year perigean cycle is identifiable in the N2 parameters at most stations, except those in the South China Sea. The radiational component of S2 contributes on average 16% of the observed S2 except in the Gulf of Tonkin, on the south coast, where it accounts for up to 65%. We confirmed the existence of nodal modulation in S2, which is stronger on the north coast. The semidiurnal tidal parameters show significant secular trends in the Bohai and Yellow Seas, on the north coast, and in the Taiwan Strait. The largest increase is found for M2 for which the amplitude increases by 4–7 mm/yr in the Yellow Sea. The potential causes for the linear trends in tidal constants are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hourly sea level records from 1954 to 2012 at 20 tide gauges at and adjacent to the Chinese coasts are used to analyze extremes in sea level and in tidal residual. Tides and tropical cyclones determine the spatial distribution of sea level maxima. Tidal residual maxima are predominantly determined by tropical cyclones. The 50 year return level is found to be sensitive to the number of extreme events used in the estimation. This is caused by the small number of tropical cyclone events happening each year which lead to other local storm events included thus significantly affecting the estimates. Significant increase in sea level extremes is found with trends in the range between 2.0 and 14.1 mm yr−1. The trends are primarily driven by changes in median sea level but also linked with increases in tidal amplitudes at three stations. Tropical cyclones cause significant interannual variations in the extremes. The interannual variability in the sea level extremes is also influenced by the changes in median sea level at the north and by the 18.6 year nodal cycle at the South China Sea. Neither of PDO and ENSO is found to be an indicator of changes in the size of extremes, but ENSO appears to regulate the number of tropical cyclones that reach the Chinese coasts. Global mean atmospheric temperature appears to be a good descriptor of the interannual variability of tidal residual extremes induced by tropical cyclones but the trend in global temperature is inconsistent with the lack of trend in the residuals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-frequency suborbital variations (Dansgaard-Oeschger cycles) characterize the climatic history of the Northern Hemisphere as observed in Greenland ice cores, deep-sea sediments of the North Atlantic, the Californian borderland, the Arabian Sea, the South China Sea, and the Chinese loess area. Paleoceanographic data from core KL126 from the Bay of Bengal in combination with data from the other Asian monsoonal areas indicate that the feedback processes involving snow and dust of the Tibetan Plateau vary the summer monsoon capacity to transport moisture into central South Asia and into the atmosphere. We postulate that the summer monsoon initiates, amplifies, and terminates these cycles in the Northern Hemisphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At marine seeps, methane is microbially oxidized resulting in the precipitation of carbonates close to the seafloor. Methane oxidation leads to sulfate depletion in sediment pore water, which induces a change in redox conditions. Rare earth element (REE) patterns of authigenic carbonate phases collected from modern seeps of the Gulf of Mexico, the Black Sea, and the Congo Fan were analyzed. Different carbonate minerals including aragonite and calcite with different crystal habits have been selected for analysis. Total REE content (SumREE) of seep carbonates varies widely, from 0.1 ppm to 42.5 ppm, but a common trend is that the SumREE in microcrystalline phases is higher than that of the associated later phases including micospar, sparite and blocky cement, suggesting that SumREE may be a function of diagenesis. The shale-normalized REE patterns of the seep carbonates often show different Ce anomalies even in samples from a specific site, suggesting that the formation conditions of seep carbonates are variable and complex. Overall, our results show that apart from anoxic, oxic conditions are at least temporarily common in seep environments.