980 resultados para nonlinear rational expectations models
Resumo:
Current mathematical models in building research have been limited in most studies to linear dynamics systems. A literature review of past studies investigating chaos theory approaches in building simulation models suggests that as a basis chaos model is valid and can handle the increasing complexity of building systems that have dynamic interactions among all the distributed and hierarchical systems on the one hand, and the environment and occupants on the other. The review also identifies the paucity of literature and the need for a suitable methodology of linking chaos theory to mathematical models in building design and management studies. This study is broadly divided into two parts and presented in two companion papers. Part (I), published in the previous issue, reviews the current state of the chaos theory models as a starting point for establishing theories that can be effectively applied to building simulation models. Part (II) develop conceptual frameworks that approach current model methodologies from the theoretical perspective provided by chaos theory, with a focus on the key concepts and their potential to help to better understand the nonlinear dynamic nature of built environment systems. Case studies are also presented which demonstrate the potential usefulness of chaos theory driven models in a wide variety of leading areas of building research. This study distills the fundamental properties and the most relevant characteristics of chaos theory essential to (1) building simulation scientists and designers (2) initiating a dialogue between scientists and engineers, and (3) stimulating future research on a wide range of issues involved in designing and managing building environmental systems.
Resumo:
This paper describes a method for the state estimation of nonlinear systems described by a class of differential-algebraic equation models using the extended Kalman filter. The method involves the use of a time-varying linearisation of a semi-explicit index one differential-algebraic equation. The estimation technique consists of a simplified extended Kalman filter that is integrated with the differential-algebraic equation model. The paper describes a simulation study using a model of a batch chemical reactor. It also reports a study based on experimental data obtained from a mixing process, where the model of the system is solved using the sequential modular method and the estimation involves a bank of extended Kalman filters.
Resumo:
A nonlinear regression structure comprising a wavelet network and a linear term is proposed for system identification. The theoretical foundation of the approach is laid by proving that radial wavelets are orthogonal to linear functions. A constructive procedure for building such models is described and the approach is tested with experimental data.
Resumo:
This paper shows that a wavelet network and a linear term can be advantageously combined for the purpose of non linear system identification. The theoretical foundation of this approach is laid by proving that radial wavelets are orthogonal to linear functions. A constructive procedure for building such nonlinear regression structures, termed linear-wavelet models, is described. For illustration, sim ulation data are used to identify a model for a two-link robotic manipulator. The results show that the introduction of wavelets does improve the prediction ability of a linear model.
Resumo:
A model structure comprising a wavelet network and a linear term is proposed for nonlinear system identification. It is shown that under certain conditions wavelets are orthogonal to linear functions and, as a result, the two parts of the model can be identified separately. The linear-wavelet model is compared to a standard wavelet network using data from a simulated fermentation process. The results show that the linear-wavelet model yields a smaller modelling error when compared to a wavelet network using the same number of regressors.
Resumo:
Decision theory is the study of models of judgement involved in, and leading to, deliberate and (usually) rational choice. In real estate investment there are normative models for the allocation of assets. These asset allocation models suggest an optimum allocation between the respective asset classes based on the investors’ judgements of performance and risk. Real estate is selected, as other assets, on the basis of some criteria, e.g. commonly its marginal contribution to the production of a mean variance efficient multi asset portfolio, subject to the investor’s objectives and capital rationing constraints. However, decisions are made relative to current expectations and current business constraints. Whilst a decision maker may believe in the required optimum exposure levels as dictated by an asset allocation model, the final decision may/will be influenced by factors outside the parameters of the mathematical model. This paper discusses investors' perceptions and attitudes toward real estate and highlights the important difference between theoretical exposure levels and pragmatic business considerations. It develops a model to identify “soft” parameters in decision making which will influence the optimal allocation for that asset class. This “soft” information may relate to behavioural issues such as the tendency to mirror competitors; a desire to meet weight of money objectives; a desire to retain the status quo and many other non-financial considerations. The paper aims to establish the place of property in multi asset portfolios in the UK and examine the asset allocation process in practice, with a view to understanding the decision making process and to look at investors’ perceptions based on an historic analysis of market expectation; a comparison with historic data and an analysis of actual performance.
Resumo:
Almost all research fields in geosciences use numerical models and observations and combine these using data-assimilation techniques. With ever-increasing resolution and complexity, the numerical models tend to be highly nonlinear and also observations become more complicated and their relation to the models more nonlinear. Standard data-assimilation techniques like (ensemble) Kalman filters and variational methods like 4D-Var rely on linearizations and are likely to fail in one way or another. Nonlinear data-assimilation techniques are available, but are only efficient for small-dimensional problems, hampered by the so-called ‘curse of dimensionality’. Here we present a fully nonlinear particle filter that can be applied to higher dimensional problems by exploiting the freedom of the proposal density inherent in particle filtering. The method is illustrated for the three-dimensional Lorenz model using three particles and the much more complex 40-dimensional Lorenz model using 20 particles. By also applying the method to the 1000-dimensional Lorenz model, again using only 20 particles, we demonstrate the strong scale-invariance of the method, leading to the optimistic conjecture that the method is applicable to realistic geophysical problems. Copyright c 2010 Royal Meteorological Society
Resumo:
The article confronts some key issues raised in the literature on public participation via a series of interrogatory questions drawn from rational choice theory. These are considered in relation to the design and process of public participation opportunities in planning and wider processes of local governance at the neighbourhood scale. In doing this, the article draws on recent research that has looked in some depth at a form of community-led planning (CLP) in England. The motives and expectations of participants, the abilities of participants, as well as the conditions in which participation takes place are seen as important factors. It is contended that the issues raised by rational choice theory are pertinent to emerging efforts to engage communities. As such, the article concludes that advocates of public participation or community engagement should not be afraid of responding to the challenges posed by questions of motive and reward of participants if lasting and worthwhile participation is to be established. Indeed, questions such as 'what's in it for me?' should be regarded as legitimate, necessary and indeed standard, in order to co-devise meaningful and durable participation opportunities and appropriate institutional environments. However, it is also maintained that wider considerations and capacity questions will also need to be confronted if participation is to become embedded as part of participatory neighbourhood-scale planning.
Resumo:
In this paper a new system identification algorithm is introduced for Hammerstein systems based on observational input/output data. The nonlinear static function in the Hammerstein system is modelled using a non-uniform rational B-spline (NURB) neural network. The proposed system identification algorithm for this NURB network based Hammerstein system consists of two successive stages. First the shaping parameters in NURB network are estimated using a particle swarm optimization (PSO) procedure. Then the remaining parameters are estimated by the method of the singular value decomposition (SVD). Numerical examples including a model based controller are utilized to demonstrate the efficacy of the proposed approach. The controller consists of computing the inverse of the nonlinear static function approximated by NURB network, followed by a linear pole assignment controller.
Resumo:
Aircraft systems are highly nonlinear and time varying. High-performance aircraft at high angles of incidence experience undesired coupling of the lateral and longitudinal variables, resulting in departure from normal controlled � ight. The construction of a robust closed-loop control that extends the stable and decoupled � ight envelope as far as possible is pursued. For the study of these systems, nonlinear analysis methods are needed. Previously, bifurcation techniques have been used mainly to analyze open-loop nonlinear aircraft models and to investigate control effects on dynamic behavior. Linear feedback control designs constructed by eigenstructure assignment methods at a � xed � ight condition are investigated for a simple nonlinear aircraft model. Bifurcation analysis, in conjunction with linear control design methods, is shown to aid control law design for the nonlinear system.
Resumo:
This study examines criteria for the existence of two stable states of the Atlantic Meridional Overturning Circulation (AMOC) using a combination of theory and simulations from a numerical coupled atmosphere–ocean climate model. By formulating a simple collection of state parameters and their relationships, the authors reconstruct the North Atlantic Deep Water (NADW) OFF state behavior under a varying external salt-flux forcing. This part (Part I) of the paper examines the steady-state solution, which gives insight into the mechanisms that sustain the NADW OFF state in this coupled model; Part II deals with the transient behavior predicted by the evolution equation. The nonlinear behavior of the Antarctic Intermediate Water (AAIW) reverse cell is critical to the OFF state. Higher Atlantic salinity leads both to a reduced AAIW reverse cell and to a greater vertical salinity gradient in the South Atlantic. The former tends to reduce Atlantic salt export to the Southern Ocean, while the latter tends to increases it. These competing effects produce a nonlinear response of Atlantic salinity and salt export to salt forcing, and the existence of maxima in these quantities. Thus the authors obtain a natural and accurate analytical saddle-node condition for the maximal surface salt flux for which a NADW OFF state exists. By contrast, the bistability indicator proposed by De Vries and Weber does not generally work in this model. It is applicable only when the effect of the AAIW reverse cell on the Atlantic salt budget is weak.
Resumo:
Aircraft systems are highly nonlinear and time varying. High-performance aircraft at high angles of incidence experience undesired coupling of the lateral and longitudinal variables, resulting in departure from normal controlled flight. The aim of this work is to construct a robust closed-loop control that optimally extends the stable and decoupled flight envelope. For the study of these systems nonlinear analysis methods are needed. Previously, bifurcation techniques have been used mainly to analyze open-loop nonlinear aircraft models and investigate control effects on dynamic behavior. In this work linear feedback control designs calculated by eigenstructure assignment methods are investigated for a simple aircraft model at a fixed flight condition. Bifurcation analysis in conjunction with linear control design methods is shown to aid control law design for the nonlinear system.
Resumo:
The idea of incorporating multiple models of linear rheology into a superensemble, to forge a consensus forecast from the individual model predictions, is investigated. The relative importance of the individual models in the so-called multimodel superensemble (MMSE) was inferred by evaluating their performance on a set of experimental training data, via nonlinear regression. The predictive ability of the MMSE model was tested by comparing its predictions on test data that were similar (in-sample) and dissimilar (out-of-sample) to the training data used in the calibration. For the in-sample forecasts, we found that the MMSE model easily outperformed the best constituent model. The presence of good individual models greatly enhanced the MMSE forecast, while the presence of some bad models in the superensemble also improved the MMSE forecast modestly. While the performance of the MMSE model on the out-of-sample training data was not as spectacular, it demonstrated the robustness of this approach.
Resumo:
We examine differential equations where nonlinearity is a result of the advection part of the total derivative or the use of quadratic algebraic constraints between state variables (such as the ideal gas law). We show that these types of nonlinearity can be accounted for in the tangent linear model by a suitable choice of the linearization trajectory. Using this optimal linearization trajectory, we show that the tangent linear model can be used to reproduce the exact nonlinear error growth of perturbations for more than 200 days in a quasi-geostrophic model and more than (the equivalent of) 150 days in the Lorenz 96 model. We introduce an iterative method, purely based on tangent linear integrations, that converges to this optimal linearization trajectory. The main conclusion from this article is that this iterative method can be used to account for nonlinearity in estimation problems without using the nonlinear model. We demonstrate this by performing forecast sensitivity experiments in the Lorenz 96 model and show that we are able to estimate analysis increments that improve the two-day forecast using only four backward integrations with the tangent linear model. Copyright © 2011 Royal Meteorological Society