994 resultados para neural differentiation
Resumo:
Emotionally arousing events can distort our sense of time. We used mixed block/event-related fMRI design to establish the neural basis for this effect. Nineteen participants were asked to judge whether angry, happy and neutral facial expressions that varied in duration (from 400 to 1,600 ms) were closer in duration to either a short or long duration they learnt previously. Time was overestimated for both angry and happy expressions compared to neutral expressions. For faces presented for 700 ms, facial emotion modulated activity in regions of the timing network Wiener et al. (NeuroImage 49(2):1728–1740, 2010) namely the right supplementary motor area (SMA) and the junction of the right inferior frontal gyrus and anterior insula (IFG/AI). Reaction times were slowest when faces were displayed for 700 ms indicating increased decision making difficulty. Taken together with existing electrophysiological evidence Ng et al. (Neuroscience, doi: 10.3389/fnint.2011.00077, 2011), the effects are consistent with the idea that facial emotion moderates temporal decision making and that the right SMA and right IFG/AI are key neural structures responsible for this effect.
Resumo:
The current research was designed to establish whether individual differences in timing performance predict neural activation in the areas that subserve the perception of short durations ranging between 400 and 1600 milliseconds. Seventeen participants completed both a temporal bisection task and a control task, in a mixed fMRI design. In keeping with previous research, there was increased activation in a network of regions typically active during time perception including the right supplementary motor area (SMA) and right pre-SMA and basal ganglia (including the putamen and right pallidum). Furthermore, correlations between neural activity in the right inferior frontal gyrus and SMA and timing performance corroborate the results of a recent meta-analysis and are further evidence that the SMA forms part of a neural clock that is responsible for the accumulation of temporal information. Specifically, subjective lengthening of the perceived duration were associated with increased activation in both the right SMA (and right pre-SMA) and right inferior frontal gyrus.
Resumo:
This paper introduces a new method to automate the detection of marine species in aerial imagery using a Machine Learning approach. Our proposed system has at its core, a convolutional neural network. We compare this trainable classifier to a handcrafted classifier based on color features, entropy and shape analysis. Experiments demonstrate that the convolutional neural network outperforms the handcrafted solution. We also introduce a negative training example-selection method for situations where the original training set consists of a collection of labeled images in which the objects of interest (positive examples) have been marked by a bounding box. We show that picking random rectangles from the background is not necessarily the best way to generate useful negative examples with respect to learning.
Resumo:
The repair of bone defects that result from periodontal diseases remains a clinical challenge for periodontal therapy. β-tricalcium phosphate (β-TCP) ceramics are biodegradable inorganic bone substitutes with inorganic components that are similar to those of bone. Demineralized bone matrix (DBM) is an acid-extracted organic matrix derived from bone sources that consists of the collagen and matrix proteins of bone. A few studies have documented the effects of DBM on the proliferation and osteogenic differentiation of human periodontal ligament cells (hPDLCs). The aim of the present study was to investigate the effects of inorganic and organic elements of bone on the proliferation and osteogenic differentiation of hPDLCs using three-dimensional porous β-TCP ceramics and DBM with or without osteogenic inducers. Primary hPDLCs were isolated from human periodontal ligaments. The proliferation of the hPDLCs on the scaffolds in the growth culture medium was examined using a Cell‑Counting kit‑8 (CCK-8) and scanning electron microscopy (SEM). Alkaline phosphatase (ALP) activity and the osteogenic differentiation of the hPDLCs cultured on the β-TCP ceramics and DBM were examined in both the growth culture medium and osteogenic culture medium. Specific osteogenic differentiation markers were examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). SEM images revealed that the cells on the β-TCP were spindle-shaped and much more spread out compared with the cells on the DBM surfaces. There were no significant differences observed in cell proliferation between the β-TCP ceramics and the DBM scaffolds. Compared with the cells that were cultured on β-TCP ceramics, the ALP activity, as well as the Runx2 and osteocalcin (OCN) mRNA levels in the hPDLCs cultured on DBM were significantly enhanced both in the growth culture medium and the osteogenic culture medium. The organic elements of bone may exhibit greater osteogenic differentiation effects on hPDLCs than the inorganic elements.
Resumo:
This paper develops a contingency view regarding the effects of structural differentiation and integration on levels of corporate entrepreneurship. Integrating notions of benefits and costs resulting from integration with structural contingency theory, we argue that the joint effects of structural differentiation and integration on corporate entrepreneurship levels are moderated by organizational size and environmental dynamism. Our findings from a time-separated sample demonstrate that in smaller organizations and more dynamic environments, the positive effects of integration on the structural differentiation-corporate entrepreneurship relationship strongly diminish. As such, with this research we begin to identify contingencies that influence the corporate entrepreneurship levels observed among firms striving to balance the needs for structural differentiation and integration.
Resumo:
The present study investigated the behavioral and neuropsychological characteristics of decision-making behavior during a gambling task as well as how these characteristics may relate to the Somatic Marker Hypothesis and the Frequency of Gain model. The applicability to intertemporal choice was also discussed. Patterns of card selection during a computerized interpretation of the Iowa Gambling Task were assessed for 10 men and 10 women. Steady State Topography was employed to assess cortical processing throughout this task. Results supported the hypothesis that patterns of card selection were in line with both theories. As hypothesized, these 2 patterns of card selection were also associated with distinct patterns of cortical activity, suggesting that intertemporal choice may involve the recruitment of right dorsolateral prefrontal cortex for somatic labeling, left fusiform gyrus for object representations, and the left dorsolateral prefrontal cortex for an analysis of the associated frequency of gain or loss. It is suggested that processes contributing to intertemporal choice may include inhibition of negatively valenced options, guiding decisions away from those options, as well as computations favoring frequently rewarded options.
Resumo:
Rodent (mouse and rat) models have been crucial in developing our understanding of human neurogenesis and neural stem cell (NSC) biology. The study of neurogenesis in rodents has allowed us to begin to understand adult human neurogenesis and in particular, protocols established for isolation and in vitro propagation of rodent NSCs have successfully been applied to the expansion of human NSCs. Furthermore, rodent models have played a central role in studying NSC function in vivo and in the development of NSC transplantation strategies for cell therapy applications. Rodents and humans share many similarities in the process of neurogenesis and NSC biology however distinct species differences are important considerations for the development of more efficient human NSC therapeutic applications. Here we review the important contributions rodent studies have had to our understanding of human neurogenesis and to the development of in vitro and in vivo NSC research. Species differences will be discussed to identify key areas in need of further development for human NSC therapy applications.
Resumo:
Purpose – There is limited evidence on how differences in economic environments affect the demand for and supply of auditing. Research on audit pricing has mainly focused on large client markets in developed economies; in contrast, the purpose of this paper is to focus on the small client segment in the emerging economy of Thailand which offers a choice between auditors of two different qualities. Design/methodology/approach – This paper is based on a random stratified sample of small clients in Thailand qualifying for audit exemption. The final sample consists of 1,950 firm-year observations for 2002-2006. Findings – The authors find evidence of product differentiation in the small client market, suggesting that small firms view certified public accountants as superior and pay a premium for their services. The authors also find that audit fees have a positive significant association with leverage, metropolitan location and client size. Audit risk and audit opinion are not, however, significantly associated with audit fees. Furthermore, the authors find no evidence that clients whose financial year ends in the auditors’ busy period pay significantly higher audit fees, and auditors engage in low-balling on initial engagements to attract audit clients. Research limitations/implications – The research shows the importance of exploring actual decisions regarding audit practice and audit pricing in different institutional and organizational settings. Originality/value – The paper extends the literature from developed economies and large/listed market setting to the emerging economy and small client market setting. As far as the authors are aware, this is the first paper to examine audit pricing in the small client market in an emerging economy.
Resumo:
Recently Convolutional Neural Networks (CNNs) have been shown to achieve state-of-the-art performance on various classification tasks. In this paper, we present for the first time a place recognition technique based on CNN models, by combining the powerful features learnt by CNNs with a spatial and sequential filter. Applying the system to a 70 km benchmark place recognition dataset we achieve a 75% increase in recall at 100% precision, significantly outperforming all previous state of the art techniques. We also conduct a comprehensive performance comparison of the utility of features from all 21 layers for place recognition, both for the benchmark dataset and for a second dataset with more significant viewpoint changes.
Resumo:
Calls from 14 species of bat were classified to genus and species using discriminant function analysis (DFA), support vector machines (SVM) and ensembles of neural networks (ENN). Both SVMs and ENNs outperformed DFA for every species while ENNs (mean identification rate – 97%) consistently outperformed SVMs (mean identification rate – 87%). Correct classification rates produced by the ENNs varied from 91% to 100%; calls from six species were correctly identified with 100% accuracy. Calls from the five species of Myotis, a genus whose species are considered difficult to distinguish acoustically, had correct identification rates that varied from 91 – 100%. Five parameters were most important for classifying calls correctly while seven others contributed little to classification performance.
Resumo:
Automated remote ultrasound detectors allow large amounts of data on bat presence and activity to be collected. Processing of such data involves identifying bat species from their echolocation calls. Automated species identification has the potential to provide more consistent, predictable, and potentially higher levels of accuracy than identification by humans. In contrast, identification by humans permits flexibility and intelligence in identification, as well as the incorporation of features and patterns that may be difficult to quantify. We compared humans with artificial neural networks (ANNs) in their ability to classify short recordings of bat echolocation calls of variable signal to noise ratios; these sequences are typical of those obtained from remote automated recording systems that are often used in large-scale ecological studies. We presented 45 recordings (1–4 calls) produced by known species of bats to ANNs and to 26 human participants with 1 month to 23 years of experience in acoustic identification of bats. Humans correctly classified 86% of recordings to genus and 56% to species; ANNs correctly identified 92% and 62%, respectively. There was no significant difference between the performance of ANNs and that of humans, but ANNs performed better than about 75% of humans. There was little relationship between the experience of the human participants and their classification rate. However, humans with <1 year of experience performed worse than others. Currently, identification of bat echolocation calls by humans is suitable for ecological research, after careful consideration of biases. However, improvements to ANNs and the data that they are trained on may in future increase their performance to beyond those demonstrated by humans.