929 resultados para muscle tension
Resumo:
To investigate the ability of ultrasonography to estimate musactivity, we measured architectural parameters (pennation angles, fascicle lengths, and muscle thickness) of several human muscles (tibialis anterior, biceps brachii, brachialis, transversus abdominis, obliquus internus abdominis, and obliquus externus abdominis) during isometric contractions of from 0 to 100% maximal voluntary contraction (MVC). Concurrently, electromyographic (EMG) activity was measured with surface (tibialis anterior only) or fine-wire electrodes. Most architectural parameters changed markedly with contractions up to 30% MVC but changed little at higher levels of contraction. Thus, ultrasound imaging can be used to detect low levels of muscle activity but cannot discriminate between moderate and strong contractions. Ultrasound measures could reliably detect changes in EMG of as little as 4% MVC (biceps muscle thickness), 5% MVC (brachialis muscle thickness), or 9% MVC (tibialis anterior pennation angle). They were generally less sensitive to changes in abdominal muscle activity, but it was possible to reliably detect contractions of 12% MVC in transversus abdominis (muscle length) and 22% MVC in obliquus internus (muscle thickness). Obliquus externus abdominis thickness did not change consistently with muscle contraction, so ultrasound measures of thickness cannot be used to detect activity of this muscle. Ultrasound imaging can thus provide a non-invasive method of detecting isometric muscle contractions of certain individual muscles.
Resumo:
Lipid homeostasis is controlled by the peroxisome proliferator-activated receptors (PPARalpha, -beta/delta, and -gamma) that function as fatty acid-dependent DNA-binding proteins that regulate lipid metabolism. In vitro and in vivo genetic and pharmacological studies have demonstrated PPARalpha regulates lipid catabolism. In contrast, PPARgamma regulates the conflicting process of lipid storage. However, relatively little is known about PPARbeta/delta in the context of target tissues, target genes, lipid homeostasis, and functional overlap with PPARalpha and -gamma. PPARbeta/delta, a very low-density lipoprotein sensor, is abundantly expressed in skeletal muscle, a major mass peripheral tissue that accounts for approximately 40% of total body weight. Skeletal muscle is a metabolically active tissue, and a primary site of glucose metabolism, fatty acid oxidation, and cholesterol efflux. Consequently, it has a significant role in insulin sensitivity, the blood-lipid profile, and lipid homeostasis. Surprisingly, the role of PPARbeta/delta in skeletal muscle has not been investigated. We utilize selective PPARalpha, -beta/delta, -gamma, and liver X receptor agonists in skeletal muscle cells to understand the functional role of PPARbeta/delta, and the complementary and/or contrasting roles of PPARs in this major mass peripheral tissue. Activation of PPARbeta/delta by GW501516 in skeletal muscle cells induces the expression of genes involved in preferential lipid utilization, beta-oxidation, cholesterol efflux, and energy uncoupling. Furthermore, we show that treatment of muscle cells with GW501516 increases apolipoprotein-A1 specific efflux of intracellular cholesterol, thus identifying this tissue as an important target of PPARbeta/delta agonists. Interestingly, fenofibrate induces genes involved in fructose uptake, and glycogen formation. In contrast, rosiglitazone-mediated activation of PPARgamma induces gene expression associated with glucose uptake, fatty acid synthesis, and lipid storage. Furthermore, we show that the PPAR-dependent reporter in the muscle carnitine palmitoyltransferase-1 promoter is directly regulated by PPARbeta/delta, and not PPARalpha in skeletal muscle cells in a PPARgamma coactivator-1-dependent manner. This study demonstrates that PPARs have distinct roles in skeletal muscle cells with respect to the regulation of lipid, carbohydrate, and energy homeostasis. Moreover, we surmise that PPARgamma/delta agonists would increase fatty acid catabolism, cholesterol efflux, and energy expenditure in muscle, and speculate selective activators of PPARbeta/delta may have therapeutic utility in the treatment of hyperlipidemia, atherosclerosis, and obesity.
Resumo:
In this report, we investigate the role of the RNA-binding protein HuR during skeletal myogenesis. At the onset of myogenesis in differentiating C2C12 myocytes and in vivo in regenerating mouse muscle, HuR cytoplasmic abundance increased dramatically, returning to a predominantly nuclear presence upon completion of myogenesis. mRNAs encoding key regulators of myogenesis-specific transcription (myogenin and MyoD) and cell cycle withdrawal (p21), bearing AU-rich regions, were found to be targets of HuR in a differentiation-dependent manner. Accordingly, mRNA half-lives were highest during differentiation, declining when differentiation was completed. Importantly, HuR-overexpressing C2C12 cells displayed increased target mRNA expression and half-life and underwent precocious differentiation. Our findings underscore a critical function for HuR during skeletal myogenesis linked to HuR's coordinate regulation of muscle differentiation genes.
Resumo:
This paper presents a new model based on thermodynamic and molecular interaction between molecules to describe the vapour-liquid phase equilibria and surface tension of pure component. The model assumes that the bulk fluid can be characterised as set of parallel layers. Because of this molecular structure, we coin the model as the molecular layer structure theory (MLST). Each layer has two energetic components. One is the interaction energy of one molecule of that layer with all surrounding layers. The other component is the intra-layer Helmholtz free energy, which accounts for the internal energy and the entropy of that layer. The equilibrium between two separating phases is derived from the minimum of the grand potential, and the surface tension is calculated as the excess of the Helmholtz energy of the system. We test this model with a number of components, argon, krypton, ethane, n-butane, iso-butane, ethylene and sulphur hexafluoride, and the results are very satisfactory. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
This work reports on the influence of polarization and morphology of electroactive poly(vinylidene fluoride), PVDF, on the biological response of myoblast cells. Non-poled, ‘‘poled +’’ and “poled-“ -PVDF were prepared in the form of films. Further, random and aligned electrospun -PVDF fiber mats were also prepared. It is demonstrated that negatively charged surfaces improve cell adhesion and proliferation and that the directional growth of the myoblast cells can be achieved by the cell culture on oriented fibers. Therefore, the potential application of electroative materials for muscle regeneration is demonstrated.
Resumo:
Abstract: Background: Familial amyloidotic polyneuropathy (FAP) is a neurodegenerative disease leading to sensory and motor polyneuropathies, and functional limitations. Liver transplantation is the only treatment for FAP, requiring medication that negatively affects bone and muscle metabolism. The aim of this study was to compare body composition, levels of specific strength, level of physical disability risk, and functional capacity of transplanted FAP patients (FAPTx) with a group of healthy individuals (CON). Methods: A group of patients with 48 FAPTx (28 men, 20 women) was compared with 24 CON individuals (14 men, 10 women). Body composition was assessed by dual-energy X-ray absorptiometry, and total skeletal muscle mass (TBSMM) and skeletal muscle index (SMI) were calculated. Handgrip strength was measured for both hands as was isometric strength of quadriceps. Muscle quality (MQ) was ascertained by the ratio of strength to muscle mass. Functional capacity was assessed by the six-minute walk test. Results: Patients with FAPTx had significantly lower functional capacity, weight, body mass index, total fat mass, TBSMM, SMI, lean mass, muscle strength, MQ, and bone mineral density. Conclusion: Patients with FAPTx appear to be at particularly high risk of functional disability, suggesting an important role for an early and appropriately designed rehabilitation program.
Resumo:
Liver transplantation is the unique treatment for several end-stage diseases. Familial Amiloidotic Polineuropathy (FAP) is a neurodegenerative disease related with systemic deposition of amyloidal fiber mainly on peripheral nervous system, clinically translated by an autonomous sensitive-motor neuropathy with severe functional limitations in some cases. The unique treatment for FAP disease is a liver transplant with a very aggressive medication to muscle metabolism and force production. To our knowledge there are no quantitative characterizations of body composition, strength or functional capacity in this population.
Resumo:
Purpose: to investigate the relationship between knee muscle strength, balance and functional independence within the first month after stroke. Relevance: cerebral vascular disease is one of the main causes of morbidity, disability and mortality in developed countries. Problems with movement control are frequent after stroke. Lower limb weakness and impaired balance are common problems that are related with the risk of falls and are likely to interfere with the ability to perform daily life activities. Physiotherapy intervention usually starts early after stroke and addresses impairments related to movement and posture in order to improve motor recovery and restore function.
Resumo:
Cerebral vascular disease is one of the main causes of morbidity, disability and mortality in developed countries. Problems with movement control are frequent after stroke. Lower limb weakness and impaired balance are common problems that are related with the risk of falls and are likely to interfere with the ability to perform daily life activities. Physiotherapy intervention usually starts early after stroke and addresses impairments related to movement and posture in order to improve motor recovery and restore function. Purpose: to investigate the relationship between knee muscle strength, balance and functional independence within the first month after stroke.
Resumo:
Liver transplantation is the unique treatment for several end stage diseases. Familial Amiloidotic Polineuropathy (FAP) is a neurodegenerative disease related with systemic deposition of amyloidal fibre mainly on peripheral nervous system, clinically translated by an autonomous sensitive-motor neuropathy with severe functional limitations in some cases. The unique treatment for FAP disease is a liver transplant with a very aggressive medication to muscle metabolism and force production. To our knowledge there are no quantitative characterizations of body composition, strength or functional capacity in this population. The purpose of this study was to compare levels of specific strength (isometric strength adjusted by lean mass or muscle quality) and functional capacity (meters in 6 minutes walk test) between FAP patients after a liver transplant (4.1±2 months after transplant surgery) (FAPT) and a healthy group (HG).
Resumo:
Coordination of apical constriction in epithelial sheets is a fundamental process during embryogenesis. Here, we show that DRhoGEF2 is a key regulator of apical pulsation and constriction of amnioserosal cells during Drosophila dorsal closure. Amnioserosal cells mutant for DRhoGEF2 exhibit a consistent decrease in amnioserosa pulsations whereas overexpression of DRhoGEF2 in this tissue leads to an increase in the contraction time of pulsations. We probed the physical properties of the amnioserosa to show that the average tension in DRhoGEF2 mutant cells is lower than wild-type and that overexpression of DRhoGEF2 results in a tissue that is more solid-like than wild-type. We also observe that in the DRhoGEF2 overexpressing cells there is a dramatic increase of apical actomyosin coalescence that can contribute to the generation of more contractile forces, leading to amnioserosal cells with smaller apical surface than wild-type. Conversely, in DRhoGEF2 mutants, the apical actomyosin coalescence is impaired. These results identify DRhoGEF2 as an upstream regulator of the actomyosin contractile machinery that drives amnioserosa cells pulsations and apical constriction.
Resumo:
A marcha assegura uma progressão do corpo, compatível com o equilíbrio dinâmico e adaptada a potenciais factores destabilizadores, de um ponto de vista antecipatório, através de sinergias coordenadas entre os MSs, o tronco e os MIs. O tronco inferior tem um papel preponderante na marcha, sobretudo na estabilização necessária durante a fase de apoio. Esta actividade implica mobilidade pélvica e alongamento activo dos abdominais para conseguir a relação comprimento-tensão muscular óptima entre quadricípite e isquiotibiais, permitindo uma correcta sequência, timing e amplitude de activação. Nas crianças com alterações neuromotoras existem alterações no controlo do movimento e na estrutura do próprio movimento, alterando todo este processo. Como tal, este estudo tem como principal objectivo determinar a influência da actividade do tronco inferior na activação muscular proximal durante a fase de apoio da marcha, em crianças com quadro motor de diplegia, caracterizada por uma dificuldade na relação entre os membros e entre estes e o tronco. Para responder a este objectivo realizou-se um estudo de série de casos, com 2 crianças com quadro motor de diplegia. Efectuou-se EMG dos músculos abdominais, quadricípite e isquiotibiais e análise de imagem (para amplitude da CF) durante a marcha, em ambos os membros e em dois momentos de avaliação, separados por 2 meses, nos quais se realizou um protocolo de intervenção terapêutica adequado a cada caso. Os resultados indicam que a variação de amplitude da CF desde a fase de ataque ao solo à fase média de apoio é aproximadamente igual em M0e M1; concretamente, a amplitude inicial é inferior à de referência (pouca flexão) (melhor em M0) e a amplitude final é superior à de referência (pouca extensão) (melhor em M1). Estes resultados são idênticos em ambos os casos. Na EMG verificou-se uma actividade mais global e sincronizada de todos os músculos, mantendo-se aproximadamente a mesma percentagem de activação em M1, sobretudo no caso 1. No caso 2 verificou-se uma maior eficiência na variação da percentagem de activação dos abdominais, em M1, e dos isquiotibiais, à direita. Em conclusão, pode dizer-se que, em crianças com alterações neuromotoras (quadro motor de diplegia), uma actividade mais eficiente e sincronizada no tempo do tronco inferior, nomeadamente dos abdominais, contribui para uma maior capacidade de extensão da CF, durante a fase de apoio.
Resumo:
O documento em anexo encontra-se na versão post-print (versão corrigida pelo editor).
Resumo:
Purpose: To quantify the effect of unstable shoe wearing on muscle activity and haemodynamic response during standing. Methods: Thirty volunteers were divided into 2 groups: the experimental group wore an unstable shoe for 8 weeks, while the control group used a conventional shoe for the same period. Muscle activity of the medial gastrocnemius, tibialis anterior, rectus femoris and biceps femoris and venous circulation were assessed in quiet standing with the unstable shoe and barefoot. Results: In the first measurement there was an increase in medial gastrocnemius activity in all volunteers while wearing the unstable shoe. On the other hand, after wearing the unstable shoe for eight weeks these differences were not verified. Venous return increased in subjects wearing the unstable shoe before and after training. Conclusions: The unstable shoe produced changes in electromyographic characteristics which were advantageous for venous circulation even after training accommodation by the neuromuscular system.