889 resultados para multiple approach
Resumo:
We describe a method for evaluating an ensemble of predictive models given a sample of observations comprising the model predictions and the outcome event measured with error. Our formulation allows us to simultaneously estimate measurement error parameters, true outcome — aka the gold standard — and a relative weighting of the predictive scores. We describe conditions necessary to estimate the gold standard and for these estimates to be calibrated and detail how our approach is related to, but distinct from, standard model combination techniques. We apply our approach to data from a study to evaluate a collection of BRCA1/BRCA2 gene mutation prediction scores. In this example, genotype is measured with error by one or more genetic assays. We estimate true genotype for each individual in the dataset, operating characteristics of the commonly used genotyping procedures and a relative weighting of the scores. Finally, we compare the scores against the gold standard genotype and find that Mendelian scores are, on average, the more refined and better calibrated of those considered and that the comparison is sensitive to measurement error in the gold standard.
Resumo:
OBJECTIVES: To investigate the influence of different approach angles on the amount of nucleus pulposus removed during intervertebral disc fenestration in dogs. METHODS: Twenty cadavers of beagle dogs were randomly divided into four groups: a control group and three treatment groups in which intervertebral fenestration was performed using either a dorsal, dorsolateral or lateral approach between the 12th thoracic and second lumbar spaces. The volume of nucleus pulposus, the weight of the residual nucleus pulposus and the angle of the working sector were measured. The ratio of the residual nucleus pulposus weight to the nucleus pulposus volume was used to evaluate the efficacy of the performed fenestration. Data were analysed with Kruskal-Wallis analysis of variance between groups on ranks with correction for ties and Bonferroni correction for multiple comparisons. Correlation between ratio and working angle was calculated using a Spearman's rank test (P<0.05). RESULTS: The calculated ratio of nuclear weight to volume was significantly less in the lateral approach group than that in the other groups. The working sector was widest in the dorsolateral approach group, but this did not correlate with efficient fenestration. CLINICAL SIGNIFICANCE: Using the lateral approach for intervertebral disc fenestration may increase the efficiency of the fenestration procedure.
Resumo:
Heterosis is widely used in breeding, but the genetic basis of this biological phenomenon has not been elucidated. We postulate that additive and dominance genetic effects as well as two-locus interactions estimated in classical QTL analyses are not sufficient for quantifying the contributions of QTL to heterosis. A general theoretical framework for determining the contributions of different types of genetic effects to heterosis was developed. Additive x additive epistatic interactions of individual loci with the entire genetic background were identified as a major component of midparent heterosis. On the basis of these findings we defined a new type of heterotic effect denoted as augmented dominance effect di* that comprises the dominance effect at each QTL minus half the sum of additive x additive interactions with all other QTL. We demonstrate that genotypic expectations of QTL effects obtained from analyses with the design III using testcrosses of recombinant inbred lines and composite-interval mapping precisely equal genotypic expectations of midparent heterosis, thus identifying genomic regions relevant for expression of heterosis. The theory for QTL mapping of multiple traits is extended to the simultaneous mapping of newly defined genetic effects to improve the power of QTL detection and distinguish between dominance and overdominance.
Resumo:
This paper presents a novel variable decomposition approach for pose recovery of the distal locking holes using single calibrated fluoroscopic image. The problem is formulated as a model-based optimal fitting process, where the control variables are decomposed into two sets: (a) the angle between the nail axis and its projection on the imaging plane, and (b) the translation and rotation of the geometrical model of the distal locking hole around the nail axis. By using an iterative algorithm to find the optimal values of the latter set of variables for any given value of the former variable, we reduce the multiple-dimensional model-based optimal fitting problem to a one-dimensional search along a finite interval. We report the results of our in vitro experiments, which demonstrate that the accuracy of our approach is adequate for successful distal locking of intramedullary nails.
Resumo:
Soil degradation is a major problem in the agriculturally dominated country of Tajikistan, which makes it necessary to determine and monitor the state of soils. For this purpose a soil spectral library was established as it enables the determination of soil properties with relatively low costs and effort. A total of 1465 soil samples were collected from three 10x10 km test sites in western Tajikistan. The diffuse reflectance of the samples was measured with a FieldSpec PRO FR from ASD in the spectral range from 380 to 2500 nm in laboratory. 166 samples were finally selected based on their spectral information and analysed on total C and N, organic C, pH, CaCO₃, extractable P, exchangeable Ca, Mg and K, and the fractions clay, silt and sand. Multiple linear regression was used to set up the models. Two third of the chemically analysed samples were used to calibrate the models, one third was used for hold-out validation. Very good prediction accuracy was obtained for total C (R² = 0.76, RMSEP = 4.36 g kg⁻¹), total N (R² = 0.83, RMSEP = 0.30 g kg⁻¹) and organic C (R² = 0.81, RMSEP = 3.30 g kg⁻¹), good accuracy for pH (R² = 0.61, RMSEP = 0.157) and CaCO3(R² = 0.72, RMSEP = 4.63 %). No models could be developed for extractable P, exchangeable Ca, Mg and K, and the fractions clay, silt and sand. It can be concluded that the spectral library approach has a high potential to substitute standard laboratory methods where rapid and inexpensive analysis is required.
Resumo:
There is poor agreement on definitions of different phenotypes of preschool wheezing disorders. The present Task Force proposes to use the terms episodic (viral) wheeze to describe children who wheeze intermittently and are well between episodes, and multiple-trigger wheeze for children who wheeze both during and outside discrete episodes. Investigations are only needed when in doubt about the diagnosis. Based on the limited evidence available, inhaled short-acting beta(2)-agonists by metered-dose inhaler/spacer combination are recommended for symptomatic relief. Educating parents regarding causative factors and treatment is useful. Exposure to tobacco smoke should be avoided; allergen avoidance may be considered when sensitisation has been established. Maintenance treatment with inhaled corticosteroids is recommended for multiple-trigger wheeze; benefits are often small. Montelukast is recommended for the treatment of episodic (viral) wheeze and can be started when symptoms of a viral cold develop. Given the large overlap in phenotypes, and the fact that patients can move from one phenotype to another, inhaled corticosteroids and montelukast may be considered on a trial basis in almost any preschool child with recurrent wheeze, but should be discontinued if there is no clear clinical benefit. Large well-designed randomised controlled trials with clear descriptions of patients are needed to improve the present recommendations on the treatment of these common syndromes.
Resumo:
Renewable energy is growing in demand, and thus the the manufacture of solar cells and photovoltaic arrays has advanced dramatically in recent years. This is proved by the fact that the photovoltaic production has doubled every 2 years, increasing by an average of 48% each year since 2002. Covering the general overview of solar cell working, and its model, this thesis will start with the three generations of photovoltaic solar cell technology, and move to the motivation of dedicating research to nanostructured solar cell. For the current generation solar cells, among several factors, like photon capture, photon reflection, carrier generation by photons, carrier transport and collection, the efficiency also depends on the absorption of photons. The absorption coefficient,α, and its dependence on the wavelength, λ, is of major concern to improve the efficiency. Nano-silicon structures (quantum wells and quantum dots) have a unique advantage compared to bulk and thin film crystalline silicon that multiple direct and indirect band gaps can be realized by appropriate size control of the quantum wells. This enables multiple wavelength photons of the solar spectrum to be absorbed efficiently. There is limited research on the calculation of absorption coefficient in nano structures of silicon. We present a theoretical approach to calculate the absorption coefficient using quantum mechanical calculations on the interaction of photons with the electrons of the valence band. One model is that the oscillator strength of the direct optical transitions is enhanced by the quantumconfinement effect in Si nanocrystallites. These kinds of quantum wells can be realized in practice in porous silicon. The absorption coefficient shows a peak of 64638.2 cm-1 at = 343 nm at photon energy of ξ = 3.49 eV ( = 355.532 nm). I have shown that a large value of absorption coefficient α comparable to that of bulk silicon is possible in silicon QDs because of carrier confinement. Our results have shown that we can enhance the absorption coefficient by an order of 10, and at the same time a nearly constant absorption coefficient curve over the visible spectrum. The validity of plots is verified by the correlation with experimental photoluminescence plots. A very generic comparison for the efficiency of p-i-n junction solar cell is given for a cell incorporating QDs and sans QDs. The design and fabrication technique is discussed in brief. I have shown that by using QDs in the intrinsic region of a cell, we can improve the efficiency by a factor of 1.865 times. Thus for a solar cell of efficiency of 26% for first generation solar cell, we can improve the efficiency to nearly 48.5% on using QDs.
Resumo:
Sustainable yields from water wells in hard-rock aquifers are achieved when the well bore intersects fracture networks. Fracture networks are often not readily discernable at the surface. Lineament analysis using remotely sensed satellite imagery has been employed to identify surface expressions of fracturing, and a variety of image-analysis techniques have been successfully applied in “ideal” settings. An ideal setting for lineament detection is where the influences of human development, vegetation, and climatic situations are minimal and hydrogeological conditions and geologic structure are known. There is not yet a well-accepted protocol for mapping lineaments nor have different approaches been compared in non-ideal settings. A new approach for image-processing/synthesis was developed to identify successful satellite imagery types for lineament analysis in non-ideal terrain. Four satellite sensors (ASTER, Landsat7 ETM+, QuickBird, RADARSAT-1) and a digital elevation model were evaluated for lineament analysis in Boaco, Nicaragua, where the landscape is subject to varied vegetative cover, a plethora of anthropogenic features, and frequent cloud cover that limit the availability of optical satellite data. A variety of digital image processing techniques were employed and lineament interpretations were performed to obtain 12 complementary image products that were evaluated subjectively to identify lineaments. The 12 lineament interpretations were synthesized to create a raster image of lineament zone coincidence that shows the level of agreement among the 12 interpretations. A composite lineament interpretation was made using the coincidence raster to restrict lineament observations to areas where multiple interpretations (at least 4) agree. Nine of the 11 previously mapped faults were identified from the coincidence raster. An additional 26 lineaments were identified from the coincidence raster, and the locations of 10 were confirmed by field observation. Four manual pumping tests suggest that well productivity is higher for wells proximal to lineament features. Interpretations from RADARSAT-1 products were superior to interpretations from other sensor products, suggesting that quality lineament interpretation in this region requires anthropogenic features to be minimized and topographic expressions to be maximized. The approach developed in this study has the potential to improve siting wells in non-ideal regions.
Resumo:
In 1992, it was shown that monoclonal antibodies blocking alpha(4)-integrins prevent the development of experimental autoimmune encephalomyelitis, an animal model for multiple sclerosis (MS). As alpha(4)beta(1)-integrin was demonstrated to mediate the attachment of immune-competent cells to inflamed brain endothelium in experimental autoimmune encephalomyelitis, the therapeutic effect was attributed to the inhibition of immune cell extravasation and inflammation in the central nervous system. This novel therapeutic approach was rapidly and successfully translated into the clinic. The humanized anti-alpha(4)-integrin antibody natalizumab demonstrated an unequivocal therapeutic effect in preventing relapses and slowing down the pace of neurological deterioration in patients with relapsing-remitting MS in phase II and phase III clinical trials. The occurrence of 3 cases of progressive multifocal leukoencephalopathy in patients treated with natalizumab led to the voluntary withdrawal of the drug from the market. After a thorough safety evaluation of all patients receiving this drug in past and ongoing studies for MS and Crohn's disease, natalizumab again obtained approval in the US and the European Community. A treatment targeting leukocyte trafficking in MS has now re-entered the clinic. Further thorough evaluation is necessary for a better understanding of the risk-benefit balance of this new treatment option for relapsing MS. In this review, we discuss the basic mechanism of action, key clinical results of clinical trials and the emerging indication of natalizumab in MS.
Resumo:
Over the past 30 years the Marlborough Family Service in London has pioneered multi-family work with marginalized families presenting simultaneously with abuse and neglect, family violence, substance misuse, educational failure and mental illness. The approach is based on a systemic multi-contextual mode and this chapter describes the evolving work, including the establishment of the first permanent multiple family day setting, specifically designed for and solely dedicated to the work with seemingly ‘hopeless’ families. The ingredients of ‘therapeutic assessments’ of parents and families are outlined and the importance of initial network meetings with professionals and family members is emphasized.
Resumo:
Adopting the capabilities approach and the terminology that has been respectively developed, we could assume that Amartya Sen’s “capabilities” consist in the actual living that people manage to achieve (“functionings”) as a result of actual free will. Sen’s freedom does not “only [depend on the] mere degree of the presence or absence of coercion or interference (from others)” (Otto and Ziegler 2006) but also on “the range of options a person has in deciding what kind of life to lead” (Dreze and Sen 1995, 10). In his book, Identity and Violence, Sen, without explicitly connecting the capabilities approach with his views on “genuine multiculturalis” (Sen 2007), in fact, introduces this extended conception of freedom in the way we examine identity matters. Since freedom becomes perceptible as the range of options a person has, concerning the kind of life he wishes to live, cultural freedom can be defined through the concept of the multiplicity of belonging. In other words, cultural freedom constitutes itself a capability, which is realized when nothing and no one, not even myself, can tie me down to a kind of cultural rigidity that tends to exclude and marginalize me. This latent connection of “capabilities” with “multiple identities” (Sen 2007) challenges us to search for the contribution Sen’s approach could have in the understanding and confrontation of issues concerning migrants, away from theoretical patterns that overemphasize the cultural otherness as an impediment to inclusion. Besides, Sen himself, without of course focusing exclusively on migrants, has already approached the matter of social exclusion with terms of his capabilities approach (Sen 2000).
Resumo:
BACKGROUND: Prostate cancer mortality disparities exist among racial/ethnic groups in the United States, yet few studies have explored the spatiotemporal trend of the disease burden. To better understand mortality disparities by geographic regions over time, the present study analyzed the geographic variations of prostate cancer mortality by three Texas racial/ethnic groups over a 22-year period. METHODS: The Spatial Scan Statistic developed by Kulldorff et al was used. Excess mortality was detected using scan windows of 50% and 90% of the study period and a spatial cluster size of 50% of the population at risk. Time trend was analyzed to examine the potential temporal effects of clustering. Spatial queries were used to identify regions with multiple racial/ethnic groups having excess mortality. RESULTS: The most likely area of excess mortality for blacks occurred in Dallas-Metroplex and upper east Texas areas between 1990 and 1999; for Hispanics, in central Texas between 1992 and 1996: and for non-Hispanic whites, in the upper south and west to central Texas areas between 1990 and 1996. Excess mortality persisted among all racial/ethnic groups in the identified counties. The second scan revealed that three counties in west Texas presented an excess mortality for Hispanics from 1980-2001. Many counties bore an excess mortality burden for multiple groups. There is no time trend decline in prostate cancer mortality for blacks and non-Hispanic whites in Texas. CONCLUSION: Disparities in prostate cancer mortality among racial/ethnic groups existed in Texas. Central Texas counties with excess mortality in multiple subgroups warrant further investigation.
Resumo:
Treatment for cancer often involves combination therapies used both in medical practice and clinical trials. Korn and Simon listed three reasons for the utility of combinations: 1) biochemical synergism, 2) differential susceptibility of tumor cells to different agents, and 3) higher achievable dose intensity by exploiting non-overlapping toxicities to the host. Even if the toxicity profile of each agent of a given combination is known, the toxicity profile of the agents used in combination must be established. Thus, caution is required when designing and evaluating trials with combination therapies. Traditional clinical design is based on the consideration of a single drug. However, a trial of drugs in combination requires a dose-selection procedure that is vastly different than that needed for a single-drug trial. When two drugs are combined in a phase I trial, an important trial objective is to determine the maximum tolerated dose (MTD). The MTD is defined as the dose level below the dose at which two of six patients experience drug-related dose-limiting toxicity (DLT). In phase I trials that combine two agents, more than one MTD generally exists, although all are rarely determined. For example, there may be an MTD that includes high doses of drug A with lower doses of drug B, another one for high doses of drug B with lower doses of drug A, and yet another for intermediate doses of both drugs administered together. With classic phase I trial designs, only one MTD is identified. Our new trial design allows identification of more than one MTD efficiently, within the context of a single protocol. The two drugs combined in our phase I trial are temsirolimus and bevacizumab. Bevacizumab is a monoclonal antibody targeting the vascular endothelial growth factor (VEGF) pathway which is fundamental for tumor growth and metastasis. One mechanism of tumor resistance to antiangiogenic therapy is upregulation of hypoxia inducible factor 1α (HIF-1α) which mediates responses to hypoxic conditions. Temsirolimus has resulted in reduced levels of HIF-1α making this an ideal combination therapy. Dr. Donald Berry developed a trial design schema for evaluating low, intermediate and high dose levels of two drugs given in combination as illustrated in a recently published paper in Biometrics entitled “A Parallel Phase I/II Clinical Trial Design for Combination Therapies.” His trial design utilized cytotoxic chemotherapy. We adapted this design schema by incorporating greater numbers of dose levels for each drug. Additional dose levels are being examined because it has been the experience of phase I trials that targeted agents, when given in combination, are often effective at dosing levels lower than the FDA-approved dose of said drugs. A total of thirteen dose levels including representative high, intermediate and low dose levels of temsirolimus with representative high, intermediate, and low dose levels of bevacizumab will be evaluated. We hypothesize that our new trial design will facilitate identification of more than one MTD, if they exist, efficiently and within the context of a single protocol. Doses gleaned from this approach could potentially allow for a more personalized approach in dose selection from among the MTDs obtained that can be based upon a patient’s specific co-morbid conditions or anticipated toxicities.
Resumo:
Climate targets are designed to inform policies that would limit the magnitude and impacts of climate change caused by anthropogenic emissions of greenhouse gases and other substances. The target that is currently recognized by most world governments1 places a limit of two degrees Celsius on the global mean warming since preindustrial times. This would require large sustained reductions in carbon dioxide emissions during the twenty-first century and beyond2, 3, 4. Such a global temperature target, however, is not sufficient to control many other quantities, such as transient sea level rise5, ocean acidification6, 7 and net primary production on land8, 9. Here, using an Earth system model of intermediate complexity (EMIC) in an observation-informed Bayesian approach, we show that allowable carbon emissions are substantially reduced when multiple climate targets are set. We take into account uncertainties in physical and carbon cycle model parameters, radiative efficiencies10, climate sensitivity11 and carbon cycle feedbacks12, 13 along with a large set of observational constraints. Within this framework, we explore a broad range of economically feasible greenhouse gas scenarios from the integrated assessment community14, 15, 16, 17 to determine the likelihood of meeting a combination of specific global and regional targets under various assumptions. For any given likelihood of meeting a set of such targets, the allowable cumulative emissions are greatly reduced from those inferred from the temperature target alone. Therefore, temperature targets alone are unable to comprehensively limit the risks from anthropogenic emissions.
Resumo:
Groundwater age is a key aspect of production well vulnerability. Public drinking water supply wells typically have long screens and are expected to produce a mixture of groundwater ages. The groundwater age distributions of seven production wells of the Holten well field (Netherlands) were estimated from tritium-helium (3H/3He), krypton-85 (85Kr), and argon-39 (39Ar), using a new application of a discrete age distribution model and existing mathematical models, by minimizing the uncertainty-weighted squared differences of modeled and measured tracer concentrations. The observed tracer concentrations fitted well to a 4-bin discrete age distribution model or a dispersion model with a fraction of old groundwater. Our results show that more than 75 of the water pumped by four shallow production wells has a groundwater age of less than 20 years and these wells are very vulnerable to recent surface contamination. More than 50 of the water pumped by three deep production wells is older than 60 years. 3H/3He samples from short screened monitoring wells surrounding the well field constrained the age stratification in the aquifer. The discrepancy between the age stratification with depth and the groundwater age distribution of the production wells showed that the well field preferentially pumps from the shallow part of the aquifer. The discrete groundwater age distribution model appears to be a suitable approach in settings where the shape of the age distribution cannot be assumed to follow a simple mathematical model, such as a production well field where wells compete for capture area.