967 resultados para multidrug-resistant isolates
Resumo:
Antifungal therapy is a central component of patient management for acute and chronic mycoses. Yet, treatment choices are restricted because of the sparse number of antifungal drug classes. Clinical management of fungal diseases is further compromised by the emergence of antifungal drug resistance, which eliminates available drug classes as treatment options. Once considered a rare occurrence, antifungal drug resistance is on the rise in many high-risk medical centers. Most concerning is the evolution of multidrug- resistant organisms refractory to several different classes of antifungal agents, especially among common Candida species. The mechanisms responsible are mostly shared by both resistant strains displaying inherently reduced susceptibility and those acquiring resistance during therapy. The molecular mechanisms include altered drug affinity and target abundance, reduced intracellular drug levels caused by efflux pumps, and formation of biofilms. New insights into genetic factors regulating these mechanisms, as well as cellular factors important for stress adaptation, provide a foundation to better understand the emergence of antifungal drug resistance.
Resumo:
Among existing fungal pathogens, Candida glabrata is outstanding in its capacity to rapidly develop resistance to currently used antifungal agents. Resistance to the class of azoles, which are still widely used agents, varies in proportion (from 5 to 20%) depending on geographical area. Moreover, resistance to the class of echinocandins, which was introduced in the late 1990s, is rising in several institutions. The recent emergence of isolates with acquired resistance to both classes of agents is a major concern since alternative therapeutic options are scarce. Although considered less pathogenic than C. albicans, C. glabrata has still evolved specific virulence traits enabling its survival and propagation in colonized and infected hosts. Development of drug resistance is usually associated with fitness costs, and this notion is documented across several microbial species. Interestingly, azole resistance in C. glabrata has revealed the opposite. Experimental models of infection showed enhanced virulence of azole-resistant isolates. Moreover, azole resistance could be associated with specific changes in adherence properties to epithelial cells or innate immunity cells (macrophages), both of which contribute to virulence changes. Here we will summarize the current knowledge on C. glabrata drug resistance and also discuss the consequences of drug resistance acquisition on the balance between C. glabrata and its hosts.
Resumo:
We conducted a survey including 3334 bloodstream infections (BSIs) due to E. coli diagnosed in 2005-2014 at a stable cohort of hospitals. Marked increases in incidence were observed for community-acquired (CA) BSIs in patients aged >75 years, CA-BSIs of digestive origin in patients aged 60-74 years, healthcare-associated BSIs, and BSIs associated with ESBL (extended-spectrum B-lactamase)-producing E. coli (ESBLEc). Using MLST, we studied the genetic diversity of 412 BSI isolates recovered during the 2014 survey: 7 major sequence type complexes (STCs) were revealed in phylogenetic group B2, 3 in group A/B1 and 2 in group D. Among the 31 ESBLEc isolates, 1/3 belonged to STC 131. We searched for possible associations between clonal groups, clinical determinants and characteristics of BSIs: isolates from groups B2 (except STC 131) and D were susceptible to antibiotics and associated with BSIs of urinary origin in patients <60 years. STC 131 and group A/B1 isolates were multi-drug resistant and associated with CA-BSIs of digestive origin in patients aged 60-74 with a recent history of antibiotic treatment. STC 131 isolates were associated with HCA-BSIs in patients with recent/present hospitalization in a long-stay unit. We provide a unique population-based picture of the epidemiology of E. coli BSI. The aging nature of the population led to an increase in the number of cases caused by the B2 and D isolates generally implicated in BSIs. In addition, the association of a trend toward increasing rates of gut colonization with multi drug-resistant isolates revealed by the rise in the incidence of BSIs of digestive origin caused by STC 131 and A/B1 (STCs 10, 23, and 155) isolates, and a significant increase in the frequency of BSIs in elderly patients with recent antibiotic treatment suggested that antibiotic use may have contributed to the growing incidence of BSI.
Resumo:
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.
Resumo:
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.
Resumo:
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.
Resumo:
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.
Resumo:
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.
Resumo:
The study was conducted to characterize pheno-genotypically the virulence factors and resistance pattern of Staphylococcus aureus isolates from milk samples of cows with subclinical mastitis. All hemolytic isolates presented beta-hemolysin, and 38% of the non-hemolytic isolates were able to express hemolysins in the presence of a beta-hemolytic strain. The amplification of the coa-gene displayed four different size polymorphisms with about 400 bp, 600 bp, 700 bp and 900 bp. The spaA gene that encodes the IgG-binding region of protein A revealed sizes of 700 bp and 900 bp. The amplification of region X from spaA yielded a single amplicon for each isolate with the prevalent amplicon size being of 180 bp. Amplification of sae gene yielded an amplicon size of 920 bp in 71% of the isolates. Antibiotic resistance pattern revealed that 42% S. aureus were susceptible to all antimicrobials tested. Seven different antibiotic patterns were observed. Our results indicated that 47% and 25% of S. aureus strains exhibited resistance to penicillin and oxacillin respectively. All oxacillin-resistant isolates were mecA-positive.
Resumo:
Genotyping techniques are valuable tools for the epidemiologic study of Staphylococcus aureus infections in the hospital setting. Pulsed-field gel electrophoresis (PFGE) is the current method of choice for S. aureus strain typing. However, the method is laborious and requires expensive equipment. In the present study, we evaluated the natural polymorphism of the genomic 16S-23S rRNA region for genotyping purpose, by PCR-based ribotyping. Three primer pairs were tested to determine the size of amplicons produced and to obtain better discrimination with agar gel electrophoresis and ethidium bromide staining. The resolution of the typing system was determined using sets of bacteria obtained from clinical specimens from a large tertiary care hospital. These included DNA from three samples obtained from a bacteremic patient, six strains with known and diverse PGFE patterns, and 88 strains collected over a 3-month period in the same hospital. Amplification patterns obtained from samples from the same patient were identical, and PFGE from samples known to be different produced three genotypes. Amplification of DNA from 61 methicillin-resistant isolates produced only one pattern. Methicillin-sensitive strains yielded a diversity of patterns, pointing to a true polyclonal distribution throughout the hospital (22 unique patterns from 27 strains). Computer-based software can be used to differentiate among identifiable strains, given the low number of bands and good characterization of PCR products. PCR-based ribotyping can be a useful technique for genotyping methicillin-sensitive S. aureus strains, but is of limited value for methicillin-resistant strains.
Resumo:
In the present study, we investigated the in vitro anti-tumoral activities of fractions from aqueous extracts of the husk fiber of the typical A and common varieties of Cocos nucifera (Palmae). Cytotoxicity against leukemia cells was determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Cells (2 x 104/well) were incubated with 0, 5, 50 or 500 µg/mL high- or low-molecular weight fractions for 48 h, treated with MTT and absorbance was measured with an ELISA reader. The results showed that both varieties have almost similar antitumoral activity against the leukemia cell line K562 (60.1 ± 8.5 and 47.5 ± 11.9% for the typical A and common varieties, respectively). Separation of the crude extracts with Amicon membranes yielded fractions with molecular weights ranging in size from 1-3 kDa (fraction A) to 3-10 kDa (fraction B) and to more than 10 kDa (fraction C). Cells were treated with 500 µg/mL of these fractions and cytotoxicity was evaluated by MTT. Fractions ranging in molecular weight from 1-10 kDa had higher cytotoxicity. Interestingly, C. nucifera extracts were also active against Lucena 1, a multidrug-resistant leukemia cell line. Their cytotoxicity against this cell line was about 50% (51.9 ± 3.2 and 56.3 ± 2.9 for varieties typical A and common, respectively). Since the common C. nucifera variety is extensively cultured in Brazil and the husk fiber is its industrial by-product, the results obtained in the present study suggest that it might be a very inexpensive source of new antineoplastic and anti-multidrug resistant drugs that warrants further investigation.
Resumo:
A new system was employed to study amplification of t,he DHF'R gene DFB,1 ) in Sa<,:;charoillYCB§. .Q~~Yi...S!i<;1~. . This system consists of a series of yeast strains containing a casset,te which encodes t he yeast, D..ERl gene ttghtly linked tjO a f usion of the yeast 1EU2. regulat,ory region wi tJ1 the LAQZ str ctural gene from E. cO.1-1 (,) . M. Clement , unpubl i,::;hed) . Th's casset;t e was shown t.o be integrat,ed int o a unj que chromosomal l ocati on in each strain . Yeast cells were se l ected for MTX-resistance and overproduction of ~ galac t osi d se ( B-gal ). Since the inserted DF'Rl and ~ACZ genes are independently regulated, it was thought that cel l s with this phenotype probably contain e d ampl if ications of the cassette. A lar ge variat ion in the f requn y o f MTX-resistance was found between the di ff e r ent str ains. These freqlen c ~ es r anged from about 2 x 10 - 7 fo r a population of cells containing the cassette integrated at, the BI J2.l gene in t,he middle of the long arm of chromosome V, to about 5 x 10-4 for a strain with the cassette i nserted in the r DNA cluster Abo It 85% of the MTX- res i stcmt iso l ates examined showed enhanced B·-gal act i v ity rel a t ive t o the parental strain . For the ma jorit y of strains, the mean B- gal activity in drug-r sistant clones was about 3 times that o f the parent following a single se l ect i on step . I n con t r ast, primary MTX-resistant derivat~ves of cells with the cassette inserted 3 at the rDNA cluster showed inc r eases in B- gal activity ranging from 9 - 14 f old r elative to the parent. Analysis of the latte r s train by Southe rn hybr idization indicated that the cassette was inde e d amplified several fold in MTX-re sistant derivatives. A sing l e strain, in which the cassette was inserted at the !lEA;], loc u.s , was used to examine in more detai 1 , the parameters affecting DFRl gene amplificat~ion in yeast . The mean B- gal activity in drug-resistant derivatives of this strain could be increased from 3 to 6 or 7 fold relative to the parent, by stepwise sel ection using increasing MTX concentrations. B-gal overproduction was found to be un stable in all primary and highly -resistant isolates examined. There was no indication, h owever, of a decrease i n growth r a t e in MTX-res i s tant cells which overproduced B - gal.
Resumo:
Introduction: Les efforts globaux pour contrôler la tuberculose sont présentement restreints par la prévalence croissante du VIH/SIDA. Quoique les éclosions de la tuberculose multi résistante (TB-MDR) soient fréquemment rapportées parmi les populations atteintes du SIDA, le lien entre VIH/SIDA et le développement de résistance n’est pas clair. Objectifs: Cette recherche visait à : (1) développer une base de connaissances concernant les facteurs associés à des éclosions de la TB-MDR parmi les patients atteints du VIH/SIDA; (2) utiliser ce cadre de connaissances pour accroître des mesures préliminaires pour mieux contrôler la tuberculose pulmonaire chez les patients atteints du VIH/SIDA; et (3) afin d’améliorer l’application des ces mesures, affiner les techniques bactériologiques existantes pour Mycobacterium tuberculosis. Méthodologie: Quatre études ont été réalisées : (1) Une étude longitudinale pour identifier les facteurs associés avec une éclosion de la TB-MDR parmi les patients atteints du SIDA qui ont reçu le traitement directement supervisé de courte durée (DOTS) pour la tuberculose pulmonaire au Lima et au Pérou entre 1999 et 2005; (2) Une étude transversale pour décrire différentes étapes de l’histoire naturelle de la tuberculose, la prévalence et les facteurs associés avec la mycobactérie qu’on retrouve dans les selles des patients atteints du SIDA; (3) Un projet pilote pour développer des stratégies de dépistage pour la tuberculose pulmonaire parmi les patients hospitalisés atteints du SIDA, en utilisant l’essaie Microscopic Observation Drug Susceptibility (MODS); et (4) Une étude laboratoire pour identifier les meilleures concentrations critiques pour détecter les souches MDR de M. tuberculosis en utilisant l’essaie MODS. Résultats : Étude 1 démontre qu’une épidémie de TB-MDR parmi les patients atteints du SIDA qui ont reçu DOTS pour la tuberculose pulmonaire ait été causée par la superinfection du clone de M. tuberculosis plutôt que le développement de la résistance secondaire. Bien que ce clone ait été plus commun parmi la cohorte de patients atteints du SIDA, il n’avait aucune différence de risque pour superinfection entre les patients avec ou sans SIDA. Ces résultats suggèrent qu’un autre facteur, possiblement associé à la diarrhée, peu contribuer à la prévalence élevée de ce clone chez les patients atteints du SIDA. Étude 2 suggère que chez la plupart des patients atteints du SIDA il a été retrouvé une mycobactérie dans leurs selles alors qu’ils étaient en phase terminale au niveau de la tuberculose pulmonaire. Or, les patients atteints du SIDA ayant été hospitalisés pendant les deux dernières années pour une autre condition médicale sont moins à risque de se retrouver avec une mycobactérie dans leurs selles. Étude 3 confirme que la tuberculose pulmonaire a été commune à tous les patients hospitalisés atteints du SIDA, mais diagnostiquée incorrectement en utilisant les critères cliniques présentement recommandés pour la tuberculose. Or, l’essaie MODS a détecté pour la plupart de ces cas. De plus, MODS a été également efficace quand la méthode a été dirigée aux patients soupçonnés d’avoir la tuberculose, à cause de leurs symptômes. Étude 4 démontre les difficultés de détecter les souches de M. tuberculosis avec une faible résistance contre ethambutol et streptomycine en utilisant l’essai MODS avec les concentrations de drogue présentement recommandées pour un milieu de culture. Cependant, l’utilité diagnostique de MODS peut être améliorée ; modifier les concentrations critiques et utiliser deux plaques et non une, pour des tests réguliers. Conclusion: Nos études soulèvent la nécessité d’améliorer le diagnostic et le traitement de la tuberculose parmi les patients atteints du SIDA, en particulier ceux qui vivent dans des régions avec moins de ressources. Par ailleurs, nos résultats font ressortir les effets indirects que les soins de santé ont sur les patients infectés par le VIH et qu’ils peuvent avoir sur le développement de la tuberculose.
Resumo:
Aquaculture is a global industry providing food and employment thereby contributing to the economy. For the sustenance of aquaculture, disease management is a major requirement. Among the bacterial pathogens Vibrio harveyi remains to be the major one especially in shrimp culture systems. Rapid and mass mortality of shrimp larvae due to Vibrio harveyi infection is well known, and the pathogen causes serious economic losses in grow out systems as well. It suggests that a well defined management strategy has to be built up to protect the crop from Vibrio harveyi infection in aquaculture systems. Antibiotics have been the choice for quite some times which led to residues in meat and development of multidrug resistant bacteria which invited ban on their application. In this context several alternate options have been thought off such as probiotics, immunostimulants and vaccines. Phage therapy is yet another option. Phages being natural parasites of bacteria and are abundant in aquatic environments their application to control bacterial pathogens in aquaculture has commendable potential in lieu of antibiotics. For that matter the therapeutic effect of phages has been proven in several antibiotic resistant pathogens inclusive of Vibrio harveyi.
Resumo:
INTRODUCCIÓN: Acinetobacter baumannii es un cocobacilo gram negativo, oportunista, de baja virulencia. En los últimos años, se ha convertido en responsable del aumento de la incidencia de infecciones en las Unidades de Cuidado Intensivo (UCI), que se caracterizan por multiresistencia a antibióticos de amplio espectro. METODOLOGÍA: Estudio de Casos y Controles Pareado, razón 1:4, en tres cohortes de brotes por A. baumannii 2006-2010 de un Hospital Universitario. Como medida de asociación se calculó el Odd Ratio con una confiabilidad del 95%, utilizando regresión logística condicional. RESULTADOS: Se identificaron 3 brotes en el periodo 2006-2010, de los cuales se obtuvo una muestra de 14 casos y 56 controles. En el análisis multivariado se encontró asociación estadísticamente significativa entre la infección/colonización por A. baumannii y el presentar algún estado de inmunosupresión (OR=15.45; IC95%=1.12-212.44) y el tener catéter venoso central en un tiempo superior a diez días (OR=13.74; IC95%=1.25-151.44). No se encontró asociación estadísticamente significativa entre infección/colonización y mortalidad. De 14 casos, 13 presentaron aislamientos de multiresistentes, 9 son de origen respiratorio, 2 hemocultivos y 3 de origen abdominal. La mortalidad en los casos no está asociada a procesos de inmunosupresión, bacteremias e infecciones/colonizaciones respiratorias. CONCLUSIONES: La infección/colonización por A. baumannii se asoció a estado de inmunosupresión del paciente y el tener catéter venoso central por más de 10 días, que se correlaciona con la intervención invasiva, frecuente en las Unidades de Cuidados Intensivos. No fue posible establecer diferenciación clara entre infección y colonización, y su asociación con la mortalidad de los pacientes.