820 resultados para multi-dimensional systems
Resumo:
Locality to other nodes on a peer-to-peer overlay network can be established by means of a set of landmarks shared among the participating nodes. Each node independently collects a set of latency measures to landmark nodes, which are used as a multi-dimensional feature vector. Each peer node uses the feature vector to generate a unique scalar index which is correlated to its topological locality. A popular dimensionality reduction technique is the space filling Hilbert’s curve, as it possesses good locality preserving properties. However, there exists little comparison between Hilbert’s curve and other techniques for dimensionality reduction. This work carries out a quantitative analysis of their properties. Linear and non-linear techniques for scaling the landmark vectors to a single dimension are investigated. Hilbert’s curve, Sammon’s mapping and Principal Component Analysis have been used to generate a 1d space with locality preserving properties. This work provides empirical evidence to support the use of Hilbert’s curve in the context of locality preservation when generating peer identifiers by means of landmark vector analysis. A comparative analysis is carried out with an artificial 2d network model and with a realistic network topology model with a typical power-law distribution of node connectivity in the Internet. Nearest neighbour analysis confirms Hilbert’s curve to be very effective in both artificial and realistic network topologies. Nevertheless, the results in the realistic network model show that there is scope for improvements and better techniques to preserve locality information are required.
Resumo:
The application of particle filters in geophysical systems is reviewed. Some background on Bayesian filtering is provided, and the existing methods are discussed. The emphasis is on the methodology, and not so much on the applications themselves. It is shown that direct application of the basic particle filter (i.e., importance sampling using the prior as the importance density) does not work in high-dimensional systems, but several variants are shown to have potential. Approximations to the full problem that try to keep some aspects of the particle filter beyond the Gaussian approximation are also presented and discussed.
Resumo:
This paper considers left-invariant control systems defined on the orthonormal frame bundles of simply connected manifolds of constant sectional curvature, namely the space forms Euclidean space E-3, the sphere S-3 and Hyperboloid H-3 with the corresponding frame bundles equal to the Euclidean group of motions SE(3), the rotation group SO(4) and the Lorentz group SO(1, 3). Orthonormal frame bundles of space forms coincide with their isometry groups and therefore the focus shifts to left-invariant control systems defined on Lie groups. In this paper a method for integrating these systems is given where the controls are time-independent. In the Euclidean case the elements of the Lie algebra se(3) are often referred to as twists. For constant twist motions, the corresponding curves g(t) is an element of SE(3) are known as screw motions, given in closed form by using the well known Rodrigues' formula. However, this formula is only applicable to the Euclidean case. This paper gives a method for computing the non-Euclidean screw motions in closed form. This involves decoupling the system into two lower dimensional systems using the double cover properties of Lie groups, then the lower dimensional systems are solved explicitly in closed form.
Resumo:
Multi-agent systems have been adopted to build intelligent environment in recent years. It was claimed that energy efficiency and occupants' comfort were the most important factors for evaluating the performance of modem work environment, and multi-agent systems presented a viable solution to handling the complexity of dynamic building environment. While previous research has made significant advance in some aspects, the proposed systems or models were often not applicable in a "shared environment". This paper introduces an ongoing project on multi-agent for building control, which aims to achieve both energy efficiency and occupants' comfort in a shared environment.
Resumo:
Recent research in multi-agent systems incorporate fault tolerance concepts, but does not explore the extension and implementation of such ideas for large scale parallel computing systems. The work reported in this paper investigates a swarm array computing approach, namely 'Intelligent Agents'. A task to be executed on a parallel computing system is decomposed to sub-tasks and mapped onto agents that traverse an abstracted hardware layer. The agents intercommunicate across processors to share information during the event of a predicted core/processor failure and for successfully completing the task. The feasibility of the approach is validated by simulations on an FPGA using a multi-agent simulator, and implementation of a parallel reduction algorithm on a computer cluster using the Message Passing Interface.
Resumo:
Multi-rate multicarrier DS/CDMA is a potentially attractive multiple access method for future wireless communications networks that must support multimedia, and thus multi-rate, traffic. Several receiver structures exist for single-rate multicarrier systems, but little has been reported on multi-rate multicarrier systems. Considering that high-performance detection such as coherent demodulation needs the explicit knowledge of the channel, based on the finite-length chip waveform truncation, this paper proposes a subspace-based scheme for timing and channel estimation in multi-rate multicarrier DS/CDMA systems, which is applicable to both multicode and variable spreading factor systems. The performance of the proposed scheme for these two multi-rate systems is validated via numerical simulations. The effects of the finite-length chip waveform truncation on the performance of the proposed scheme is also analyzed theoretically.
Resumo:
Increased penetration of generation and decentralised control are considered to be feasible and effective solution for reducing cost and emissions and hence efficiency associated with power generation and distribution. Distributed generation in combination with the multi-agent technology are perfect candidates for this solution. Pro-active and autonomous nature of multi-agent systems can provide an effective platform for decentralised control whilst improving reliability and flexibility of the grid.
Resumo:
In 'Avalanche', an object is lowered, players staying in contact throughout. Normally the task is easily accomplished. However, with larger groups counter-intuitive behaviours appear. The paper proposes a formal theory for the underlying causal mechanisms. The aim is to not only provide an explicit, testable hypothesis for the source of the observed modes of behaviour-but also to exemplify the contribution that formal theory building can make to understanding complex social phenomena. Mapping reveals the importance of geometry to the Avalanche game; each player has a pair of balancing loops, one involved in lowering the object, the other ensuring contact. For more players, sets of balancing loops interact and these can allow dominance by reinforcing loops, causing the system to chase upwards towards an ever-increasing goal. However, a series of other effects concerning human physiology and behaviour (HPB) is posited as playing a role. The hypothesis is therefore rigorously tested using simulation. For simplicity a 'One Degree of Freedom' case is examined, allowing all of the effects to be included whilst rendering the analysis more transparent. Formulation and experimentation with the model gives insight into the behaviours. Multi-dimensional rate/level analysis indicates that there is only a narrow region in which the system is able to move downwards. Model runs reproduce the single 'desired' mode of behaviour and all three of the observed 'problematic' ones. Sensitivity analysis gives further insight into the system's modes and their causes. Behaviour is seen to arise only when the geometric effects apply (number of players greater than degrees of freedom of object) in combination with a range of HPB effects. An analogy exists between the co-operative behaviour required here and various examples: conflicting strategic objectives in organizations; Prisoners' Dilemma and integrated bargaining situations. Additionally, the game may be relatable in more direct algebraic terms to situations involving companies in which the resulting behaviours are mediated by market regulations. Finally, comment is offered on the inadequacy of some forms of theory building and the case is made for formal theory building involving the use of models, analysis and plausible explanations to create deep understanding of social phenomena.
Resumo:
Wireless technology based pervasive healthcare has been proposed in many applications such as disease management and accident prevention for cost saving and promoting citizen’s wellbeing. However, the emphasis so far is on the artefacts with limited attentions to guiding the development of an effective and efficient solution for pervasive healthcare. Therefore, this paper aims to propose a framework of multi-agent systems design for pervasive healthcare by adopting the concept of pervasive informatics and using the methods of organisational semiotics. The proposed multi-agent system for pervasive healthcare utilises sensory information to support healthcare professionals for providing appropriate care. The key contributions contain theoretical aspect and practical aspect. In theory, this paper articulates the information interactions between the pervasive healthcare environment and stakeholders by using the methods of organisational semiotics; in practice, the proposed framework improves the healthcare quality by providing appropriate medical attentions when and as needed. In this paper, both systems and functional architecture of the multi-agent system are elaborated with the use of wireless technologies such as RFID and wireless sensor networks. The future study will focus on the implementation of the proposed framework.
Resumo:
Global communication requirements and load imbalance of some parallel data mining algorithms are the major obstacles to exploit the computational power of large-scale systems. This work investigates how non-uniform data distributions can be exploited to remove the global communication requirement and to reduce the communication cost in iterative parallel data mining algorithms. In particular, the analysis focuses on one of the most influential and popular data mining methods, the k-means algorithm for cluster analysis. The straightforward parallel formulation of the k-means algorithm requires a global reduction operation at each iteration step, which hinders its scalability. This work studies a different parallel formulation of the algorithm where the requirement of global communication can be relaxed while still providing the exact solution of the centralised k-means algorithm. The proposed approach exploits a non-uniform data distribution which can be either found in real world distributed applications or can be induced by means of multi-dimensional binary search trees. The approach can also be extended to accommodate an approximation error which allows a further reduction of the communication costs.
Resumo:
Distributed generation plays a key role in reducing CO2 emissions and losses in transmission of power. However, due to the nature of renewable resources, distributed generation requires suitable control strategies to assure reliability and optimality for the grid. Multi-agent systems are perfect candidates for providing distributed control of distributed generation stations as well as providing reliability and flexibility for the grid integration. The proposed multi-agent energy management system consists of single-type agents who control one or more gird entities, which are represented as generic sub-agent elements. The agent applies one control algorithm across all elements and uses a cost function to evaluate the suitability of the element as a supplier. The behavior set by the agent's user defines which parameters of an element have greater weight in the cost function, which allows the user to specify the preference on suppliers dynamically. This study shows the ability of the multi-agent energy management system to select suppliers according to the selection behavior given by the user. The optimality of the supplier for the required demand is ensured by the cost function based on the parameters of the element.
Resumo:
In this paper we provide a connection between the geometrical properties of the attractor of a chaotic dynamical system and the distribution of extreme values. We show that the extremes of so-called physical observables are distributed according to the classical generalised Pareto distribution and derive explicit expressions for the scaling and the shape parameter. In particular, we derive that the shape parameter does not depend on the cho- sen observables, but only on the partial dimensions of the invariant measure on the stable, unstable, and neutral manifolds. The shape parameter is negative and is close to zero when high-dimensional systems are considered. This result agrees with what was derived recently using the generalized extreme value approach. Combining the results obtained using such physical observables and the properties of the extremes of distance observables, it is possible to derive estimates of the partial dimensions of the attractor along the stable and the unstable directions of the flow. Moreover, by writing the shape parameter in terms of moments of the extremes of the considered observable and by using linear response theory, we relate the sensitivity to perturbations of the shape parameter to the sensitivity of the moments, of the partial dimensions, and of the Kaplan–Yorke dimension of the attractor. Preliminary numer- ical investigations provide encouraging results on the applicability of the theory presented here. The results presented here do not apply for all combinations of Axiom A systems and observables, but the breakdown seems to be related to very special geometrical configurations.
Resumo:
In general, particle filters need large numbers of model runs in order to avoid filter degeneracy in high-dimensional systems. The recently proposed, fully nonlinear equivalent-weights particle filter overcomes this requirement by replacing the standard model transition density with two different proposal transition densities. The first proposal density is used to relax all particles towards the high-probability regions of state space as defined by the observations. The crucial second proposal density is then used to ensure that the majority of particles have equivalent weights at observation time. Here, the performance of the scheme in a high, 65 500 dimensional, simplified ocean model is explored. The success of the equivalent-weights particle filter in matching the true model state is shown using the mean of just 32 particles in twin experiments. It is of particular significance that this remains true even as the number and spatial variability of the observations are changed. The results from rank histograms are less easy to interpret and can be influenced considerably by the parameter values used. This article also explores the sensitivity of the performance of the scheme to the chosen parameter values and the effect of using different model error parameters in the truth compared with the ensemble model runs.
Resumo:
Nonlinear data assimilation is high on the agenda in all fields of the geosciences as with ever increasing model resolution and inclusion of more physical (biological etc.) processes, and more complex observation operators the data-assimilation problem becomes more and more nonlinear. The suitability of particle filters to solve the nonlinear data assimilation problem in high-dimensional geophysical problems will be discussed. Several existing and new schemes will be presented and it is shown that at least one of them, the Equivalent-Weights Particle Filter, does indeed beat the curse of dimensionality and provides a way forward to solve the problem of nonlinear data assimilation in high-dimensional systems.