929 resultados para monitoring design
Resumo:
This study investigated the effects of self-monitoring on the homework completion and accuracy rates of four, fourth-grade students with disabilities in an inclusive general education classroom. A multiple baseline across subjects design was utilized to examine four dependent variables: completion of spelling homework, accuracy of spelling homework, completion of math homework, accuracy of math homework. Data were collected and analyzed during baseline, three phases of intervention, and maintenance. ^ Throughout baseline and all phases, participants followed typical classroom procedures, brought their homework to school each day and gave it to the general education teacher. During Phase I of the intervention, participants self-monitored with a daily sheet at home and on the computer at school in the morning using KidTools (Fitzgerald & Koury, 2003); a student friendly, self-monitoring program. They also participated in brief daily conferences to review their self-monitoring sheets with the investigator, their special education teacher. Phase II followed the same steps except conferencing was reduced to two days a week, which were randomly selected by the researcher and Phase III conferencing was one random day a week. Maintenance data were taken over a two-to-three week period subsequent to the end of the intervention. ^ Results of this study demonstrated self-monitoring substantially improved spelling and math homework completion and accuracy rates of students with disabilities in an inclusive, general education classroom. On average, completion and accuracy rates were highest over baseline in Phase III. Self-monitoring led to higher percentages of completion and accuracy during each phase of the intervention compared to baseline, group percentages also rose slightly during maintenance. Therefore, results suggest self-monitoring leads to short-term maintenance in spelling and math homework completion and accuracy. ^ This study adds to the existing literature by investigating the effects of self-monitoring of homework for students with disabilities included in general education classrooms. Future research should consider selecting participants with other demographic characteristics, using peers for conferencing instead of the teacher, and the use of self-monitoring with other academic subjects (e.g., science, history). Additionally, future research could investigate the effects of each of the two self-monitoring components used alone, with or without the conferencing.^
Resumo:
The purpose of this research is design considerations for environmental monitoring platforms for the detection of hazardous materials using System-on-a-Chip (SoC) design. Design considerations focus on improving key areas such as: (1) sampling methodology; (2) context awareness; and (3) sensor placement. These design considerations for environmental monitoring platforms using wireless sensor networks (WSN) is applied to the detection of methylmercury (MeHg) and environmental parameters affecting its formation (methylation) and deformation (demethylation). ^ The sampling methodology investigates a proof-of-concept for the monitoring of MeHg using three primary components: (1) chemical derivatization; (2) preconcentration using the purge-and-trap (P&T) method; and (3) sensing using Quartz Crystal Microbalance (QCM) sensors. This study focuses on the measurement of inorganic mercury (Hg) (e.g., Hg2+) and applies lessons learned to organic Hg (e.g., MeHg) detection. ^ Context awareness of a WSN and sampling strategies is enhanced by using spatial analysis techniques, namely geostatistical analysis (i.e., classical variography and ordinary point kriging), to help predict the phenomena of interest in unmonitored locations (i.e., locations without sensors). This aids in making more informed decisions on control of the WSN (e.g., communications strategy, power management, resource allocation, sampling rate and strategy, etc.). This methodology improves the precision of controllability by adding potentially significant information of unmonitored locations.^ There are two types of sensors that are investigated in this study for near-optimal placement in a WSN: (1) environmental (e.g., humidity, moisture, temperature, etc.) and (2) visual (e.g., camera) sensors. The near-optimal placement of environmental sensors is found utilizing a strategy which minimizes the variance of spatial analysis based on randomly chosen points representing the sensor locations. Spatial analysis is employed using geostatistical analysis and optimization occurs with Monte Carlo analysis. Visual sensor placement is accomplished for omnidirectional cameras operating in a WSN using an optimal placement metric (OPM) which is calculated for each grid point based on line-of-site (LOS) in a defined number of directions where known obstacles are taken into consideration. Optimal areas of camera placement are determined based on areas generating the largest OPMs. Statistical analysis is examined by using Monte Carlo analysis with varying number of obstacles and cameras in a defined space. ^
Resumo:
In 2005 we began a multi-year intensive monitoring and assessment study of tropical hardwood hammocks within two distinct hydrologic regions in Everglades National Park, under funding from the CERP Monitoring and Assessment Program. In serving as an Annual Report for 2010, this document, reports in detail on the population dynamics and status of tropical hardwood hammocks in Shark Slough and adjacent marl prairies during a 4-year period between 2005 and 2009. 2005-09 was a period that saw a marked drawdown in marsh water levels (July 2006 - July 2008), and an active hurricane season in 2005 with two hurricanes, Hurricane Katrina and Wilma, making landfall over south Florida. Thus much of our focus here is on the responses of these forests to annual variation in marsh water level, and on recovery from disturbance. Most of the data are from 16 rectangular permanent plots of 225-625 m2 , with all trees mapped and tagged, and bi-annual sampling of the tree, sapling, shrub, and herb layer in a nested design. At each visit, canopy photos were taken and later analyzed for determination of interannual variation in leaf area index and canopy openness. Three of the plots were sampled at 2-month intervals, in order to gain a better idea of seasonal dynamics in litterfall and litter turnover. Changes in canopy structure were monitored through a vertical line intercept method.
Resumo:
Over the last decade advances and innovations from Silicon Photonics technology were observed in the telecommunications and computing industries. This technology which employs Silicon as an optical medium, relies on current CMOS micro-electronics fabrication processes to enable medium scale integration of many nano-photonic devices to produce photonic integrated circuitry. ^ However, other fields of research such as optical sensor processing can benefit from silicon photonics technology, specially in sensors where the physical measurement is wavelength encoded. ^ In this research work, we present a design and application of a thermally tuned silicon photonic device as an optical sensor interrogator. ^ The main device is a micro-ring resonator filter of 10 μm of diameter. A photonic design toolkit was developed based on open source software from the research community. With those tools it was possible to estimate the resonance and spectral characteristics of the filter. From the obtained design parameters, a 7.8 × 3.8 mm optical chip was fabricated using standard micro-photonics techniques. In order to tune a ring resonance, Nichrome micro-heaters were fabricated on top of the device. Some fabricated devices were systematically characterized and their tuning response were determined. From measurements, a ring resonator with a free-spectral-range of 18.4 nm and with a bandwidth of 0.14 nm was obtained. Using just 5 mA it was possible to tune the device resonance up to 3 nm. ^ In order to apply our device as a sensor interrogator in this research, a model of wavelength estimation using time interval between peaks measurement technique was developed and simulations were carried out to assess its performance. To test the technique, an experiment using a Fiber Bragg grating optical sensor was set, and estimations of the wavelength shift of this sensor due to axial strains yield an error within 22 pm compared to measurements from spectrum analyzer. ^ Results from this study implies that signals from FBG sensors can be processed with good accuracy using a micro-ring device with the advantage of ts compact size, scalability and versatility. Additionally, the system also has additional applications such as processing optical wavelength shifts from integrated photonic sensors and to be able to track resonances from laser sources.^
Resumo:
The sudden hydrocarbon influx from the formation into the wellbore poses a serious risk to the safety of the well. This sudden influx is termed a kick, which, if not controlled, may lead to a blowout. Therefore, early detection of the kick is crucial to minimize the possibility of a blowout occurrence. There is a high probability of delay in kick detection, apart from other issues when using a kick detection system that is exclusively based on surface monitoring. Down-hole monitoring techniques have a potential to detect a kick at its early stage. Down-hole monitoring could be particularly beneficial when the influx occurs as a result of a lost circulation scenario. In a lost circulation scenario, when the down-hole pressure becomes lower than the formation pore pressure, the formation fluid may starts to enter the wellbore. The lost volume of the drilling fluid is compensated by the formation fluid flowing into the well bore, making it difficult to identify the kick based on pit (mud tank) volume observations at the surface. This experimental study investigates the occurrence of a kick based on relative changes in the mass flow rate, pressure, density, and the conductivity of the fluid in the down-hole. Moreover, the parameters that are most sensitive to formation fluid are identified and a methodology to detect a kick without false alarms is reported. Pressure transmitter, the Coriolis flow and density meter, and the conductivity sensor are employed to observe the deteriorating well conditions in the down-hole. These observations are used to assess the occurrence of a kick and associated blowout risk. Monitoring of multiple down-hole parameters has a potential to improve the accuracy of interpretation related to kick occurrence, reduces the number of false alarms, and provides a broad picture of down-hole conditions. The down-hole monitoring techniques have a potential to reduce the kick detection period. A down-hole assembly of the laboratory scale drilling rig model and kick injection setup were designed, measuring instruments were acquired, a frame was fabricated, and the experimental set-up was assembled and tested. This set-up has the necessary features to evaluate kick events while implementing down-hole monitoring techniques. Various kick events are simulated on the drilling rig model. During the first set of experiments compressed air (which represents the formation fluid) is injected with constant pressure margin. In the second set of experiments the compressed air is injected with another pressure margin. The experiments are repeated with another pump (flow) rate as well. This thesis consists of three main parts. The first part gives the general introduction, motivation, outline of the thesis, and a brief description of influx: its causes, various leading and lagging indicators, and description of the several kick detection systems that are in practice in the industry. The second part describes the design and construction of the laboratory scale down-hole assembly of the drilling rig and kick injection setup, which is used to implement the proposed methodology for early kick detection. The third part discusses the experimental work, describes the methodology for early kick detection, and presents experimental results that show how different influx events affect the mass flow rate, pressure, conductivity, and density of the fluid in the down-hole, and the discussion of the results. The last chapter contains summary of the study and future research.
Resumo:
Wild bee species abundance based on combined flight traps (yellow funnels with perspex windows) placed at ecotones between semi-natural habitats and agricultural fields. Design: six agricultural dominated landscapes of 4x4 km with one trap per square km in Saxony-Anhalt (Germany), activity of traps in late spring-early summer (three sampling rounds) and late summer (three sampling rounds).
Resumo:
Acknowledgements This work was funded by the National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs, grant G1100675). The authors are grateful to the aquarium staff at the University of Aberdeen (Karen Massie) and Dr David Smail at Marine Scotland for valuable discussion during the establishment of the experimental design.
Resumo:
Peer reviewed
Resumo:
Acknowledgements Thank you to all the participants who agreed to take part in the trial. This study was supported NHS Research Scotland (NRS), through Chief Scientist Office (CSO) and the Scottish Mental Health Research Network, and the Clinical Research Network-Mental Health. We are grateful to the Psychosis Research Unit (PRU) Service User Reference Group (SURG) for their consultation regarding the design of the study and contribution to the developments of study related materials. We are grateful to our Independent Trial Steering Committee and Independent Data Monitoring Committee for provided oversight of the trial. Funding This project was funded by the National Institute for Health Research Health Technology Assessment (NIHR HTA) programme (project number10/101/02) and will be published in full in Health Technology Assessment. Visit the HTA programme website for further project information. The views and opinions expressed therein are those of the authors and do not necessarily reflect those of the HTA programme, NIHR, NHS or the Department of Health.
Resumo:
Peer reviewed
Resumo:
Monitoring and enforcement are perhaps the biggest challenges in the design and implementation of environmental policies in developing countries where the actions of many small informal actors cause significant impacts on the ecosystem services and where the transaction costs for the state to regulate them could be enormous. This dissertation studies the potential of innovative institutions based on decentralized coordination and enforcement to induce better environmental outcomes. Such policies have in common that the state plays the role of providing the incentives for organization but the process of compliance happens through decentralized agreements, trust building, signaling and monitoring. I draw from the literatures in collective action, common-pool resources, game-theory and non-point source pollution to develop the instruments proposed here. To test the different conditions in which such policies could be implemented I designed two field-experiments that I conducted with small-scale gold miners in the Colombian Pacific and with users and providers of ecosystem services in the states of Veracruz, Quintana Roo and Yucatan in Mexico. This dissertation is organized in three essays.
The first essay, “Collective Incentives for Cleaner Small-Scale Gold Mining on the Frontier: Experimental Tests of Compliance with Group Incentives given Limited State Monitoring”, examines whether collective incentives, i.e. incentives provided to a group conditional on collective compliance, could “outsource” the required local monitoring, i.e. induce group interactions that extend the reach of the state that can observe only aggregate consequences in the context of small-scale gold mining. I employed a framed field-lab experiment in which the miners make decisions regarding mining intensity. The state sets a collective target for an environmental outcome, verifies compliance and provides a group reward for compliance which is split equally among members. Since the target set by the state transforms the situation into a coordination game, outcomes depend on expectations of what others will do. I conducted this experiment with 640 participants in a mining region of the Colombian Pacific and I examine different levels of policy severity and their ordering. The findings of the experiment suggest that such instruments can induce compliance but this regulation involves tradeoffs. For most severe targets – with rewards just above costs – raise gains if successful but can collapse rapidly and completely. In terms of group interactions, better outcomes are found when severity initially is lower suggesting learning.
The second essay, “Collective Compliance can be Efficient and Inequitable: Impacts of Leaders among Small-Scale Gold Miners in Colombia”, explores the channels through which communication help groups to coordinate in presence of collective incentives and whether the reached solutions are equitable or not. Also in the context of small-scale gold mining in the Colombian Pacific, I test the effect of communication in compliance with a collective environmental target. The results suggest that communication, as expected, helps to solve coordination challenges but still some groups reach agreements involving unequal outcomes. By examining the agreements that took place in each group, I observe that the main coordination mechanism was the presence of leaders that help other group members to clarify the situation. Interestingly, leaders not only helped groups to reach efficiency but also played a key role in equity by defining how the costs of compliance would be distributed among group members.
The third essay, “Creating Local PES Institutions and Increasing Impacts of PES in Mexico: A real-Time Watershed-Level Framed Field Experiment on Coordination and Conditionality”, considers the creation of a local payments for ecosystem services (PES) mechanism as an assurance game that requires the coordination between two groups of participants: upstream and downstream. Based on this assurance interaction, I explore the effect of allowing peer-sanctions on upstream behavior in the functioning of the mechanism. This field-lab experiment was implemented in three real cases of the Mexican Fondos Concurrentes (matching funds) program in the states of Veracruz, Quintana Roo and Yucatan, where 240 real users and 240 real providers of hydrological services were recruited and interacted with each other in real time. The experimental results suggest that initial trust-game behaviors align with participants’ perceptions and predicts baseline giving in assurance game. For upstream providers, i.e. those who get sanctioned, the threat and the use of sanctions increase contributions. Downstream users contribute less when offered the option to sanction – as if that option signal an uncooperative upstream – then the contributions rise in line with the complementarity in payments of the assurance game.
Resumo:
Wild bee species abundance based on combined flight traps (yellow funnels with perspex windows) placed at ecotones between semi-natural habitats and agricultural fields. Design: six agricultural dominated landscapes of 4x4 km with one trap per square km in Saxony-Anhalt (Germany), activity of traps in late spring-early summer (three sampling rounds) and late summer (three sampling rounds).
Resumo:
Wild bee species abundance based on combined flight traps (yellow funnels with perspex windows) placed at ecotones between semi-natural habitats and agricultural fields. Design: six agricultural dominated landscapes of 4x4 km with one trap per square km in Saxony-Anhalt (Germany), activity of traps in late spring-early summer (three sampling rounds) and late summer (three sampling rounds).
Resumo:
Wild bee species abundance based on combined flight traps (yellow funnels with perspex windows) placed at ecotones between semi-natural habitats and agricultural fields. Design: six agricultural dominated landscapes of 4x4 km with one trap per square km in Saxony-Anhalt (Germany), activity of traps in late spring-early summer (three sampling rounds) and late summer (three sampling rounds).
Resumo:
Wild bee species abundance based on combined flight traps (yellow funnels with perspex windows) placed at ecotones between semi-natural habitats and agricultural fields. Design: six agricultural dominated landscapes of 4x4 km with one trap per square km in Saxony-Anhalt (Germany), activity of traps in late spring-early summer (three sampling rounds) and late summer (three sampling rounds).