927 resultados para model-based autonomy
Resumo:
Objectives: Several population pharmacokinetic (PPK) and pharmacokinetic-pharmacodynamic (PK-PD) analyses have been performed with the anticancer drug imatinib. Inspired by the approach of meta-analysis, we aimed to compare and combine results from published studies in a useful way - in particular for improving the clinical interpretation of imatinib concentration measurements in the scope of therapeutic drug monitoring (TDM). Methods: Original PPK analyses and PK-PD studies (PK surrogate: trough concentration Cmin; PD outcomes: optimal early response and specific adverse events) were searched systematically on MEDLINE. From each identified PPK model, a predicted concentration distribution under standard dosage was derived through 1000 simulations (NONMEM), after standardizing model parameters to common covariates. A "reference range" was calculated from pooled simulated concentrations in a semi-quantitative approach (without specific weighting) over the whole dosing interval. Meta-regression summarized relationships between Cmin and optimal/suboptimal early treatment response. Results: 9 PPK models and 6 relevant PK-PD reports in CML patients were identified. Model-based predicted median Cmin ranged from 555 to 1388 ng/ml (grand median: 870 ng/ml and inter-quartile range: 520-1390 ng/ml). The probability to achieve optimal early response was predicted to increase from 60 to 85% from 520 to 1390 ng/ml across PK-PD studies (odds ratio for doubling Cmin: 2.7). Reporting of specific adverse events was too heterogeneous to perform a regression analysis. The general frequency of anemia, rash and fluid retention increased however consistently with Cmin, but less than response probability. Conclusions: Predicted drug exposure may differ substantially between various PPK analyses. In this review, heterogeneity was mainly attributed to 2 "outlying" models. The established reference range seems to cover the range where both good efficacy and acceptable tolerance are expected for most patients. TDM guided dose adjustment appears therefore justified for imatinib in CML patients. Its usefulness remains now to be prospectively validated in a randomized trial.
Resumo:
Ventricular assist devices (VADs) are used in treatment for terminal heart failure or as a bridge to transplantation. We created biVAD using the artificial muscles (AMs) that supports both ventricles at the same time. We developed the test bench (TB) as the in vitro evaluating system to enable the measurement of performance. The biVAD exerts different pressure between left and right ventricle like the heart physiologically does. The heart model based on child's heart was constructed in silicone. This model was fitted with the biVAD. Two pipettes containing water with an ultrasonic sensor placed on top of each and attached to ventricles reproduced the preload and the after load of each ventricle by the real-time measurement of the fluid height variation proportionally to the exerted pressure. The LabVIEW software extrapolated the displaced volume and the pressure generated by each side of our biVAD. The development of a standardized protocol permitted the validation of the TB for in vitro evaluation, measurement of the performances of the AM biVAD herein, and reproducibility of data.
Resumo:
Objectives: Gentamicin is among the most commonly prescribed antibiotics in newborns, but large interindividual variability in exposure levels exists. Based on a population pharmacokinetic analysis of a cohort of unselected neonates, we aimed to validate current dosing recommendations from a recent reference guideline (Neofax®). Methods: From 3039 concentrations collected in 994 preterm (median gestational age 32.3 weeks, range 24.2-36.5) and 455 term newborns, treated at the University Hospital of Lausanne between 2006 and 2011, a population pharmacokinetic analysis was performed with NONMEM®. Model-based simulations were used to assess the ability of dosing regimens to bring concentrations into targets: trough ≤ 1mg/L and peak ~ 8mg/L. Results: A two-compartment model best characterized gentamicin pharmacokinetics. Model parameters are presented in the table. Body weight, gestational age and postnatal age positively influence clearance, which decreases under dopamine administration. Body weight and gestational age influence the distribution volume. Model based simulations confirm that preterm infants need doses superior to 4 mg/kg, and extended dosage intervals, up to 48 hours for very preterm newborns, whereas most term newborns would achieve adequate exposure under 4 mg/kg q. 24 h. More than 90% of neonates would achieve trough concentrations below 2 mg/L and peaks above 6 mg/L following most recent guidelines. Conclusions: Simulated gentamicin exposure demonstrates good accordance with recent dosing recommendations for target concentration achievement.
Resumo:
MOTIVATION: Combinatorial interactions of transcription factors with cis-regulatory elements control the dynamic progression through successive cellular states and thus underpin all metazoan development. The construction of network models of cis-regulatory elements, therefore, has the potential to generate fundamental insights into cellular fate and differentiation. Haematopoiesis has long served as a model system to study mammalian differentiation, yet modelling based on experimentally informed cis-regulatory interactions has so far been restricted to pairs of interacting factors. Here, we have generated a Boolean network model based on detailed cis-regulatory functional data connecting 11 haematopoietic stem/progenitor cell (HSPC) regulator genes. RESULTS: Despite its apparent simplicity, the model exhibits surprisingly complex behaviour that we charted using strongly connected components and shortest-path analysis in its Boolean state space. This analysis of our model predicts that HSPCs display heterogeneous expression patterns and possess many intermediate states that can act as 'stepping stones' for the HSPC to achieve a final differentiated state. Importantly, an external perturbation or 'trigger' is required to exit the stem cell state, with distinct triggers characterizing maturation into the various different lineages. By focusing on intermediate states occurring during erythrocyte differentiation, from our model we predicted a novel negative regulation of Fli1 by Gata1, which we confirmed experimentally thus validating our model. In conclusion, we demonstrate that an advanced mammalian regulatory network model based on experimentally validated cis-regulatory interactions has allowed us to make novel, experimentally testable hypotheses about transcriptional mechanisms that control differentiation of mammalian stem cells. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Resumo:
Model predictiu basat en xarxes bayesianes que permet identificar els pacients amb major risc d'ingrés a un hospital segons una sèrie d'atributs de dades demogràfiques i clíniques.
Resumo:
A model-based approach for fault diagnosis is proposed, where the fault detection is based on checking the consistencyof the Analytical Redundancy Relations (ARRs) using an interval tool. The tool takes into account the uncertainty in theparameters and the measurements using intervals. Faults are explicitly included in the model, which allows for the exploitation of additional information. This information is obtained from partial derivatives computed from the ARRs. The signs in the residuals are used to prune the candidate space when performing the fault diagnosis task. The method is illustrated using a two-tank example, in which these aspects are shown to have an impact on the diagnosis and fault discrimination, since the proposed method goes beyond the structural methods
Resumo:
Zeta potential is a physico-chemical parameter of particular importance to describe sorption of contaminants at the surface of gas bubbles. Nevertheless, the interpretation of electrophoretic mobilities of gas bubbles is complex. This is due to the specific behavior of the gas at interface and to the excess of electrical charge at interface, which is responsible for surface conductivity. We developed a surface complexation model based on the presence of negative surface sites because the balance of accepting and donating hydrogen bonds is broken at interface. By considering protons adsorbed on these sites followed by a diffuse layer, the electrical potential at the head-end of the diffuse layer is computed and considered to be equal to the zeta potential. The predicted zeta potential values are in very good agreement with the experimental data of H-2 bubbles for a broad range of pH and NaCl concentrations. This implies that the shear plane is located at the head-end of the diffuse layer, contradicting the assumption of the presence of a stagnant diffuse layer at the gas/water interface. Our model also successfully predicts the surface tension of air bubbles in a KCl solution. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
Customer choice behavior, such as 'buy-up' and 'buy-down', is an importantphe-nomenon in a wide range of industries. Yet there are few models ormethodologies available to exploit this phenomenon within yield managementsystems. We make some progress on filling this void. Specifically, wedevelop a model of yield management in which the buyers' behavior ismodeled explicitly using a multi-nomial logit model of demand. Thecontrol problem is to decide which subset of fare classes to offer ateach point in time. The set of open fare classes then affects the purchaseprobabilities for each class. We formulate a dynamic program todetermine the optimal control policy and show that it reduces to a dynamicnested allocation policy. Thus, the optimal choice-based policy caneasily be implemented in reservation systems that use nested allocationcontrols. We also develop an estimation procedure for our model based onthe expectation-maximization (EM) method that jointly estimates arrivalrates and choice model parameters when no-purchase outcomes areunobservable. Numerical results show that this combined optimization-estimation approach may significantly improve revenue performancerelative to traditional leg-based models that do not account for choicebehavior.
Resumo:
The detection of Parkinson's disease (PD) in its preclinical stages prior to outright neurodegeneration is essential to the development of neuroprotective therapies and could reduce the number of misdiagnosed patients. However, early diagnosis is currently hampered by lack of reliable biomarkers. (1) H magnetic resonance spectroscopy (MRS) offers a noninvasive measure of brain metabolite levels that allows the identification of such potential biomarkers. This study aimed at using MRS on an ultrahigh field 14.1 T magnet to explore the striatal metabolic changes occurring in two different rat models of the disease. Rats lesioned by the injection of 6-hydroxydopamine (6-OHDA) in the medial-forebrain bundle were used to model a complete nigrostriatal lesion while a genetic model based on the nigral injection of an adeno-associated viral (AAV) vector coding for the human α-synuclein was used to model a progressive neurodegeneration and dopaminergic neuron dysfunction, thereby replicating conditions closer to early pathological stages of PD. MRS measurements in the striatum of the 6-OHDA rats revealed significant decreases in glutamate and N-acetyl-aspartate levels and a significant increase in GABA level in the ipsilateral hemisphere compared with the contralateral one, while the αSyn overexpressing rats showed a significant increase in the GABA striatal level only. Therefore, we conclude that MRS measurements of striatal GABA levels could allow for the detection of early nigrostriatal defects prior to outright neurodegeneration and, as such, offers great potential as a sensitive biomarker of presymptomatic PD.
Resumo:
AIMS: While successful termination by pacing of organized atrial tachycardias has been observed in patients, single site rapid pacing has not yet led to conclusive results for the termination of atrial fibrillation (AF). The purpose of this study was to evaluate a novel atrial septal pacing algorithm for the termination of AF in a biophysical model of the human atria. METHODS AND RESULTS: Sustained AF was generated in a model based on human magnetic resonance images and membrane kinetics. Rapid pacing was applied from the septal area following a dual-stage scheme: (i) rapid pacing for 10-30 s at pacing intervals 62-70% of AF cycle length (AFCL), (ii) slow pacing for 1.5 s at 180% AFCL, initiated by a single stimulus at 130% AFCL. Atrial fibrillation termination success rates were computed. A mean success rate for AF termination of 10.2% was obtained for rapid septal pacing only. The addition of the slow pacing phase increased this rate to 20.2%. At an optimal pacing cycle length (64% AFCL) up to 29% of AF termination was observed. CONCLUSION: The proposed septal pacing algorithm could suppress AF reentries in a more robust way than classical single site rapid pacing. Experimental studies are now needed to determine whether similar termination mechanisms and rates can be observed in animals or humans, and in which types of AF this pacing strategy might be most effective.
Resumo:
Background: Network reconstructions at the cell level are a major development in Systems Biology. However, we are far from fully exploiting its potentialities. Often, the incremental complexity of the pursued systems overrides experimental capabilities, or increasingly sophisticated protocols are underutilized to merely refine confidence levels of already established interactions. For metabolic networks, the currently employed confidence scoring system rates reactions discretely according to nested categories of experimental evidence or model-based likelihood. Results: Here, we propose a complementary network-based scoring system that exploits the statistical regularities of a metabolic network as a bipartite graph. As an illustration, we apply it to the metabolism of Escherichia coli. The model is adjusted to the observations to derive connection probabilities between individual metabolite-reaction pairs and, after validation, to assess the reliability of each reaction in probabilistic terms. This network-based scoring system uncovers very specific reactions that could be functionally or evolutionary important, identifies prominent experimental targets, and enables further confirmation of modeling results. Conclusions: We foresee a wide range of potential applications at different sub-cellular or supra-cellular levels of biological interactions given the natural bipartivity of many biological networks.
Resumo:
Context: Until now, the testosterone/epitestosterone (T/E) ratio is the main marker for detection of testosterone (T) misuse in athletes. As this marker can be influenced by a number of confounding factors, additional steroid profile parameters indicating T misuse can provide substantiating evidence of doping with endogenous steroids. The evaluation of a steroid profile is currently based upon population statistics. Since large inter-individual variations exist, a paradigm shift towards subject-based references is ongoing in doping analysis. Objective: Proposition of new biomarkers for the detection of testosterone in sports using extensive steroid profiling and an adaptive model based upon Bayesian inference. Subjects: 6 healthy male volunteers were administered with testosterone undecanoate. Population statistics were performed upon steroid profiles from 2014 male Caucasian athletes participating in official sport competition. Design: An extended search for new biomarkers in a comprehensive steroid profile combined with Bayesian inference techniques as used in the Athlete Biological Passport resulted in a selection of additional biomarkers that may improve detection of testosterone misuse in sports. Results: Apart from T/E, 4 other steroid ratios (6α-OH-androstenedione/16α-OH-dehydroepiandrostenedione, 4-OH-androstenedione/16α-OH-androstenedione, 7α-OH-testosterone/7β-OH-dehydroepiandrostenedione and dihydrotestosterone/5β-androstane-3α,17β-diol) were identified as sensitive urinary biomarkers for T misuse. These new biomarkers were rated according to relative response, parameter stability, detection time and discriminative power. Conclusion: Newly selected biomarkers were found suitable for individual referencing within the concept of the Athlete's Biological Passport. The parameters showed improved detection time and discriminative power compared to the T/E ratio. Such biomarkers can support the evidence of doping with small oral doses of testosterone.
Resumo:
Depth-averaged velocities and unit discharges within a 30 km reach of one of the world's largest rivers, the Rio Parana, Argentina, were simulated using three hydrodynamic models with different process representations: a reduced complexity (RC) model that neglects most of the physics governing fluid flow, a two-dimensional model based on the shallow water equations, and a three-dimensional model based on the Reynolds-averaged Navier-Stokes equations. Row characteristics simulated using all three models were compared with data obtained by acoustic Doppler current profiler surveys at four cross sections within the study reach. This analysis demonstrates that, surprisingly, the performance of the RC model is generally equal to, and in some instances better than, that of the physics based models in terms of the statistical agreement between simulated and measured flow properties. In addition, in contrast to previous applications of RC models, the present study demonstrates that the RC model can successfully predict measured flow velocities. The strong performance of the RC model reflects, in part, the simplicity of the depth-averaged mean flow patterns within the study reach and the dominant role of channel-scale topographic features in controlling the flow dynamics. Moreover, the very low water surface slopes that typify large sand-bed rivers enable flow depths to be estimated reliably in the RC model using a simple fixed-lid planar water surface approximation. This approach overcomes a major problem encountered in the application of RC models in environments characterised by shallow flows and steep bed gradients. The RC model is four orders of magnitude faster than the physics based models when performing steady-state hydrodynamic calculations. However, the iterative nature of the RC model calculations implies a reduction in computational efficiency relative to some other RC models. A further implication of this is that, if used to simulate channel morphodynamics, the present RC model may offer only a marginal advantage in terms of computational efficiency over approaches based on the shallow water equations. These observations illustrate the trade off between model realism and efficiency that is a key consideration in RC modelling. Moreover, this outcome highlights a need to rethink the use of RC morphodynamic models in fluvial geomorphology and to move away from existing grid-based approaches, such as the popular cellular automata (CA) models, that remain essentially reductionist in nature. In the case of the world's largest sand-bed rivers, this might be achieved by implementing the RC model outlined here as one element within a hierarchical modelling framework that would enable computationally efficient simulation of the morphodynamics of large rivers over millennial time scales. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a control strategy for blood glucose(BG) level regulation in type 1 diabetic patients. To design the controller, model-based predictive control scheme has been applied to a newly developed diabetic patient model. The controller is provided with a feedforward loop to improve meal compensation, a gain-scheduling scheme to account for different BG levels, and an asymmetric cost function to reduce hypoglycemic risk. A simulation environment that has been approved for testing of artificial pancreas control algorithms has been used to test thecontroller. The simulation results show a good controller performance in fasting conditions and meal disturbance rejection, and robustness against model–patient mismatch and errors in mealestimation
Resumo:
Because data on rare species usually are sparse, it is important to have efficient ways to sample additional data. Traditional sampling approaches are of limited value for rare species because a very large proportion of randomly chosen sampling sites are unlikely to shelter the species. For these species, spatial predictions from niche-based distribution models can be used to stratify the sampling and increase sampling efficiency. New data sampled are then used to improve the initial model. Applying this approach repeatedly is an adaptive process that may allow increasing the number of new occurrences found. We illustrate the approach with a case study of a rare and endangered plant species in Switzerland and a simulation experiment. Our field survey confirmed that the method helps in the discovery of new populations of the target species in remote areas where the predicted habitat suitability is high. In our simulations the model-based approach provided a significant improvement (by a factor of 1.8 to 4 times, depending on the measure) over simple random sampling. In terms of cost this approach may save up to 70% of the time spent in the field.