956 resultados para model determination
Resumo:
We construct age models for a suite of cores from the northeast Atlantic Ocean by means of accelerator mass spectrometer dating of a key core, BOFS 5K, and correlation with the rest of the suite. The effects of bioturbation and foraminiferal species abundance gradients upon the age record are modeled using a simple equation. The degree of bioturbation is estimated by comparing modeled profiles with dispersal of the Vedde Ash layer in core 5K, and we find a mixing depth of roughly 8 cm for sand-sized material. Using this value, we estimate that age offsets between unbioturbated sediment and some foraminifera species after mixing may be up to 2500 years, with lesser effect on fine carbonate (< 10 µm) ages. The bioturbation model illustrates problems associated with the dating of 'instantaneous' events such as ash layers and the 'Heinrich' peaks of ice-rafted detritus. Correlations between core 5K and the other cores from the BOFS suite are made on the basis of similarities in the downcore profiles of oxygen and carbon isotopes, magnetic susceptibility, water and carbonate content, and via marker horizons in X radiographs and ash beds.
Resumo:
In central Antarctica, drainage today and earlier back to the Paleozoic radiates from the Gamburtsev Subglacial Mountains (GSM). Proximal to the GSM past the Permian-Triassic fluvial sandstones in the Prince Charles Mountains (PCM) are Cretaceous, Eocene, and Pleistocene sediment in Prydz Bay (ODP741, 1166, and 1167) and pre-Holocene sediment in AM04 beneath the Amery Ice Shelf. We analysed detrital zircons for U-Pb ages, Hf-isotope compositions, and trace elements to determine the age, rock type, source of the host magma, and "crustal" model age (T(C)DM). These samples, together with others downslope from the GSM and the Vostok Subglacial Highlands (VSH), define major clusters of detrital zircons interpreted as coming from (1) 700 to 460 Ma mafic granitoids and alkaline rock, epsilon-Hf 9 to -28, signifying derivation 2.5 to 1.3 Ga from fertile and recycled crust, and (2) 1200-900 Ma mafic granitoids and alkaline rock, epsilon-Hf 11 to -28, signifying derivation 1.8 to 1.3 Ga from fertile and recycled crust. Minor clusters extend to 3350 Ma. Similar detrital zircons in Permian-Triassic, Ordovician, Cambrian, and Neoproterozoic sandstones located along the PaleoPacific margin of East Antarctica and southeast Australia further downslope from central Antarctica reflect the upslope GSM-VSH nucleus of the central Antarctic provenance as a complex of 1200-900 Ma (Grenville) mafic granitoids and alkaline rocks and older rocks embedded in 700-460 Ma (Pan-Gondwanaland) fold belts. The wider central Antarctic provenance (CAP) is tentatively divided into a central sector with negative ?Hf in its 1200-900 Ma rocks bounded on either side by positive epsilon-Hf. The high ground of the GSM-VSH in the Permian and later to the present day is attributed to crustal shortening by far-field stress during the 320 Ma mid-Carboniferous collision of Gondwanaland and Laurussia. Earlier uplifts in the ~500 Ma Cambrian possibly followed the 700-500 Ma assembly of Gondwanaland, and in the Neoproterozoic the 1000-900 Ma collisional events in the Eastern Ghats-Rayner Province at the end of the 1300-1000 Ma assembly of Rodinia.
Resumo:
The Gangdese belt, Tibet, records the opening and closure of the Neo-Tethyan ocean and the resultant collision between the Indian and Eurasian plates. Mesozoic magmatic rocks generated through subduction of the Tethyan oceanic slab constitute the main component of the Gangdese belt, and play a crucial role in understanding the formation and evolution of the Neo-Tethyan tectonic realm. U-Pb and Lu-Hf isotopic data for tonalite and granodiorite from the Xietongmen-Nymo segment of the Gangdese belt indicate a significant pulse of Jurassic magmatism from 184 Ma to 168 Ma. The magmatic rocks belong to metaluminous medium-K calc-alkaline series, characterized by regular variation in major element compositions with SiO2 of 61.35%-73.59 wt%, low to moderate MgO (0.31%-2.59%) with Mg# of 37-45. These magmatic rocks are also characterized by LREE enrichment with concave upward trend in MREE on the chondrite-normalized REE patterns, and also LILE enrichment and depletion in Nb, Ta and Ti in the primitive mantle normalized spidergrams. These rocks have high zircon ?Hf(t) values of + 10.94 to + 15.91 and young two-stage depleted mantle model ages (TDM2) of 192 Ma to 670 Ma. The low MgO contents and relatively depleted Hf isotope compositions, suggest that the granitoid rocks were derived from the partial melting of the juvenile basaltic lower crust with minor mantle materials injected. In combined with the published data, it is suggested that northward subduction of the Neo-Tethyan slab beneath the Lhasa terrane began by the Late-Triassic, which formed a major belt of arc-related magmatism.
Resumo:
Oxygen isotopic (d18O) climatic stratigraphy and radiocarbon chronology, at high resolution, have been used to establish an age model for Ocean Drilling Program Hole 1017E, a continuous 25-m sequence of hemipelagic sediments from the continental slope (956 m water depth), east of Point Arguella, Southern California. The upper part of Hole 1017E from ~33 ka (7.445 mbsf) was dated using 13 calendar-corrected radiocarbon ages of mixed planktonic foraminiferal assemblages. Benthic oxygen isotopic stratigraphy records a continuous 130-k.y. sequence ranging from marine isotope Stage 6 to the present day. The benthic d18O curve, representing the last two interglacial and glacial cycles, closely resembles the well-dated, deep-sea reference sequence, providing a detailed chronologic framework. Sedimentation rates remained relatively constant throughout the sequence at ~18 cm/k.y. and were sufficiently rapid to provide considerable potential for high-resolution paleoceanographic/paleoclimatic investigations. Planktonic foraminiferal oxygen isotopic stratigraphy based on the surface-dwelling form Globigerina bulloides defines an almost complete sequence of interstadial/stadial oscillations (Dansgaard/Oeschger cycles [D/O]). Combined use of radiocarbon chronology, deep-sea oxygen isotopic datums, and visual pattern matching has enabled us to identify the sequence of D/O cycles as described for the Greenland (GRIP2) ice core. This has strengthened the stratigraphic framework for the last 60 k.y. in the sequence as a basis for further paleoenvironmental investigations.
Resumo:
In der Döberitzer Heide nördlich von Potsdam wurden vegetationsgeschichtliche Untersuchungen durchgeführt. Das Untersuchungsgebiet befindet sich im östlichen Teil der Nauener Platte, die bisher vegetationsgeschichtlich weitgehend unerforscht war. In sechs verschiedenen Mooren wurden acht Bohrungen niedergebracht. Die Bohrkerne wurden stratigraphisch und pollenanalytisch untersucht und für die Radiocarbondatierung beprobt. Die Pollendiagramme ermöglichen die Rekonstruktion der Vegetationsentwicklung der terrestrischen Standorte und der Moore in der Döberitzer Heide in den letzten 14.000 Jahren. Neben einer Revision der Gliederungsprinzipien der spätglazialen Vegetationsentwicklung Brandenburgs und einer vergleichenden Betrachtung der Moorentwicklung in der Döberitzer Heide wurde besonderes Augenmerk auf die Geschichte des Döberitzer Lindenwaldes gerichtet, der einen Sonderfall in der brandenburgischen Vegetation darstellt. Die Untersuchungen boten die Möglichkeit, die Ursachen seiner Entstehung zu klären, Aussagen zu den Perspektiven seiner Entwicklung zu treffen und mögliche Entwicklungspotentiale von Lindenwäldern im Land Brandenburg aufzuzeigen.
Resumo:
The isotopic and micropaleontological deglacial records of three deep-sea cores from 44°S to 55°S have been dated by accelerator mass spectrometry. The available records did not allow accurate dating of the initiation of the deglaciation. By 13,000 years B.P., sea surface temperatures reached values similar to the present values. A cool oscillation abruptly interrupted this warm phase between 12,000 and 11,000 years B.P. Initiation of this cooling therefore preceded the northern hemisphere Younger Dryas by approximately 1000 years. Complete warming was reached by 10,000 years B.P., more or less synchronous with the northeast Atlantic Ocean.
Resumo:
Age dating of Paleogene diamictites from ODP Site 739 in Prydz Bay with marine microfossils (diatoms and calcareous nannofossils) suggests the build-up of a major East Antarctic ice shield in latest Eocene to earliest Oligocene time, about 35-38 m.y. ago. Strontium isotopic analyses of small mollusk remains found within these diamictites, however, yield younger ages ranging from 29 to 23 Ma (i.e., latest early Oligocene to earliest Miocene). These age discrepancies could be caused by repeated glacial reworking of microfossils, macrofossils, and sediment clasts through the late Oligocene or, alternatively, by ion exchange in the still aragonitic mollusk shells.
Resumo:
Stratigraphic information from strontium, oxygen, and carbon isotopic ratios has been integrated with diatom and planktonic foraminifer datums to refine the Oligocene to early Miocene chemostratigraphy of Site 803. The Sr isotope results are based on analyses of mixed species of planktonic foraminifer and bulk carbonate samples. 87Sr/86Sr ratios of bulk carbonate samples are, in most cases, less radiogenic than contemporaneous seawater. Estimated sediment ages based on planktonic foraminifer 87Sr/86Sr ratios, using the Sr-isotope-age relation determined by Hess and others in 1989, are in moderately good agreement with the biostratigraphic ages. Chronological resolution is significantly enhanced with the correlation of oxygen and carbon isotope records to those of the standard Oligocene section tied to the Geomagnetic Polarity Time Scale at Site 522. Ages revised by this method and other published ages of planktonic foraminifer datums are used to revise the Oligocene stratigraphy of Site 77 to correlate the stable isotope records of Sites 77 and 803. Comparison of the Cibicidoides stable isotope records of Sites 77 and 574 with paleodepths below 2500 m in the central equatorial Pacific, and Site 803 at about 2000-m paleodepth in the Ontong Java Plateau reveals inversions in the vertical d18O gradient at several times during the Oligocene and in the early Miocene. The shallower water site had significantly-higher d18O values than the deeper water sites after the earliest Oligocene 18O enrichment and before 34.5 Ma, in the late Oligocene from 27.5 to at least 25 Ma, and in the early Miocene from 22.5 to 20.5 Ma. It is not possible to ascertain if the d18O inversion persisted during the Oligocene/Miocene transition because the deeper sites have hiatuses spanning this interval. We interpret this pattern to reflect that waters at about 2000 m depth were cold and may have formed from mixing with colder waters originating in northern or southern high-latitude regions. The deeper water appear to have been warmer and may have been a mixture with warm saline waters from mid- or low-latitude regions. No apparent vertical d13C gradient is present during the Oligocene, suggesting that the age difference of these water masses was small.
Resumo:
In agreement with the Milankovitch orbital forcing hypothesis (Imbrie et al., 1993) it is often assumed that glacial-interglacial climate transitions occurred synchronously in the Northern and Southern hemispheres of the Earth. It is difficult to test this assumption, because of the paucity of long, continuous climate records from the Southern Hemisphere that have not been dated by tuning them to the presumed Northern Hemisphere signals (Lynch-Stieglitz, 2004). Here we present an independently dated terrestrial pollen record from a peat bog on South Island, New Zealand, to investigate global and local factors in Southern Hemisphere climate changes during the last two glacial-interglacial cycles. Our record largely corroborates the Milankovitch model of orbital forcing but also exhibits some differences: in particular, an earlier onset and longer duration of the Last Glacial Maximum. Our results suggest that Southern Hemisphere insolation may have been responsible for these differences in timing. Our findings question the validity of applying orbital tuning to Southern Hemisphere records and suggest an alternative mechanism to the bipolar seesaw for generating interhemispheric asynchrony in climate change.
Resumo:
Numerous studies have shown that delta18O records from benthic and planktonic foraminifera, primarily a proxy of global ice volume variations, reflect Milankovitch periodicities. To study climatic response to orbital forcing at Ocean Drilling Program site 758, we have generated continuous delta18O and delta13C records from a single benthic foraminiferal species Cibicides wuellerstorfi for the last 3.6 m.y. and extended the planktonic foraminiferal isotope records of Farrell and Janecek (1991, doi:10.2973/odp.proc.sr.121.124.1991) (0-2.5 Ma, based on Globigerinoides sacculifer) to 3.6 Ma (Chen, 1994). We then constructed an age model by matching, correlating and tuning the benthic delta18O record to a model simulation of ice volume (Imbrie and Imbrie, 1980, doi:10.1126/science.207.4434.943). The filtered 41- and 23-kyr signals based on the resultant astronomically tuned age model are highly correlated to obliquity (r=0.83) and precession (r=0.75), respectively. Although derived with methodology different from Shackleton et al. (1990) and Hilgen (1991, doi:10.1016/0012-821X(91)90206-W, 1991, doi:10.1016/0012-821X(91)90082-S), our results generally agree with their published astronomical timescales for the time interval from 0 to 3.0 Ma, providing additional support for the newly emerging chronology based on orbital tuning. Slight discrepancies exist in the time interval from 3.0 to 3.6 Ma, suggesting several possibilities, including differences in the approaches of orbital tuning and the relatively low amplitude of delta18O variations in our record. However, even if the discrepancies are due to the relatively low amplitude of the isotope signals in our record at 3.0-3.6 Ma, our resultant timescale as a whole does not adversely affect our evaluation of the paleoclimatology and paleoceanography of the Indian Ocean, such as the evolution of the 100-, 41- and 23-kyr cycles, and variation of global ice volume and deepwater temperature during the past 3.6 m.y.
Resumo:
The sediments recovered on ODP Leg 104 have been reported to be characterized by hiatuses. The hiatuses were defined by biostratigraphy and were believed to be caused by erosion related to temporary changes of bottom current composition and velocity. They have been associated with major paleoenvironmental changes, reorganization of global deep water production, and increased bottom water flows. Because of the importance of hiatuses for ongoing research, we decided to closely investigate the sedimentation history for the most significant Pliocene and Miocene biostratigraphic hiatuses by sedimentologic and geochemical means. The sedimentologic studies include clay mineral distributions, grain size data, and organic carbon concentrations. The geochemical studies include determination of 87/86Sr ratios, 10Be and Ir concentrations. The results of the sedimentologic studies suggest either that paleoenvironmental changes associated with hiatuses are not represented in the preserved sediments, or that the hiatuses are an artifact of interpretation of the biostratigraphic data. Strontium isotopes indicate continuous sedimentation for the interval investigated at Site 642, an interpretation confirmed by the steady decline in 10Be. 87/86Sr ratios in the interval from above and below proposed hiatuses H 2.2/2.3 and H2.1/2.2 at Site 643 display stronger changes with depth than expected by steady sedimentation. Ir data for this same interval indicate reduced sedimentation rates. Combining both, sedimentologic and geochemical evidence, the proposed hiatuses could not be confirmed and may represent preservation artifacts.
Resumo:
High-resolution records of alkenone-derived sea surface temperatures and elemental Ti/Ca ratios from a sediment core retrieved off northeastern Brazil (4° S) reveal short-term climate variability throughout the past 63,000 a. Large pulses of terrigenous sediment discharge, caused by increased precipitation in the Brazilian hinterland, coincide with Heinrich events and the Younger Dryas period. Terrigenous input maxima related to Heinrich events H6-H2 are characterized by rapid cooling of surface water ranging between 0.5 and 2° C. This signature is consistent with a climate model experiment where a reduction of the Atlantic meridional overturning circulation (AMOC) and related North Atlantic cooling causes intensification of NE trade winds and a southward movement of the Intertropical Convergence Zone, resulting in enhanced precipitation off northeastern Brazil. During deglaciation the surface temperature evolution at the core site predominantly followed the Antarctic warming trend, including a cooling, prior to the Younger Dryas period. An abrupt temperature rise preceding the onset of the Bølling/Allerød transition agrees with model experiments suggesting a Southern Hemisphere origin for the abrupt resumption of the AMOC during deglaciation caused by Southern Ocean warming and associated with northward flow anomalies of the South Atlantic western boundary current.
Resumo:
Sea surface temperature and salinity estimates reconstructed using planktonic foraminiferal abundance and delta18O records from core SU90-03 (40°N, 32°W, 2475 m water depth) reveal large climatic fluctuations linked to major instabilities in Northern Hemisphere ice sheets over the last 150 000 years. Episodes of enhanced ice rafted detritus (IRD) input were accompanied by discrete temperature minima, representing coolings of between 4 and 8°C, and reductions in surface salinity of up to 2.5-3.5 per mil. Several additional cooling episodes of a similar magnitude were documented during intervals of low IRD input that appear to be synchronous, within the limits of dating, with ice rafting events spatially confined to higher latitudes. Accelerator mass spectrometer 14C dates for Heinrich events (H1 - 14.2 ka, H2 - 21.4 ka, H3 - 26.7 ka, H4 - 34.8 ka, H5 - 47.2 ka) obtained from core SU90-03 agree well with other published age estimates and suggest a contemporaneous pattern of climate change throughout the North Atlantic during the last glacial period. This interpretation is supported by a comparison of IRD and palaeotemperature records from DSDP site 609 and core SU90-03, which clearly shows that the major climatic fluctuations identified at high latitudes were transmitted toward the subtropics. However, 14C dates suggest that ice rafting episodes may be diachronous to some extent. The northward migration of the polar front after the H1 event at 40°N in the mid-Atlantic occurred at 14 ka, approximately 500 years earlier than along the Portuguese margin, where the southerly advection of polar waters persisted within eastern boundary current system.
Resumo:
Site 958 was drilled to monitor the late Neogene history of both continental aridity in northwestern Africa and the Canary Current distant from nearshore upwelling. Based on magnetostratigraphy, biostratigraphic datums, variations in carbonate, coarse fraction components, and the species composition of planktonic foraminifers, as well as using the d18O records of Globigerinoides ruber (white), we established a splice between Holes 958A and 958B and a stratigraphic age scale deciphering Milankovitch cycles. Over the last 630 k.y., sedimentation rates amount to 2.9 cm/k.y., and to 2.05-2.53 cm/k.y. back to the base of the Pleistocene. Extremely low rates of 0.4 cm/k.y. and a reworking of fossils mark the late Pliocene. The first continuous, long, sea-surface temperature (SST) record from the center of the Canary Current, which is based on foraminifer species census data, depicts a general temperature decrease in the late Pliocene, lower SST and high seasonalities of up to 6°C ~2.0-1.6 Ma, a warmer interval from 1.6 Ma to ~0.85 Ma, again lower SST and higher seasonalities until 0.33 or 0.26 Ma, and a final warmer interval, lasting until at least 50 ka, possibly reflecting the attenuated dynamics of the Canary Current. Especially over the last 400 k.y., since Stage 11, glacial stages are hardly reflected by cold SST cycles, except for various abrupt and extremely short cooling events amounting to D6°C, which possibly result from North Atlantic Heinrich events. Similar, but not necessarily synchronous, events of short-term, extremely high values occur in the paleoproductivity and (d13Cbased) paleonutrient records, which indicate a generally low primary production averaging to 180 g C m**-2 yr**-1 at 50-330 ka and about 300 g C m**-2 yr**-1 back to the base of the Pleistocene. Near 1.2-1.6 Ma, the grain-size and magnetic susceptibility records document a significant increase in the discharge of south Saharan/Sahelian dust, possibly linked to increasing aridity.
Resumo:
Alkenone sea surface temperature (SST) records were generated from the Ocean Drilling Program's (ODP) Sites 1014 and 1016 to examine the response of the California Current System to global climate change during the last 136 ka. The temperature differences between these sites (Delta SST(NEP)=SST(ODP1014)-SST(ODP1016)) reflected the intensity of the California Current and varied between 0.4 and 6.1 °C. A high Delta SST(NEP) (weaker California Current) was found for late marine isotope stage (MIS) 2 and early MIS 5e, while a low Delta SST(NEP) (stronger California Current) was detected for mid-MIS 5e and MIS 1. Spectral analysis indicated that this variation pattern dominated 23- (precession) and 30-ka periods. Comparison of the Delta SST(NEP) and SST based on data from core MD01-2421 at the Japan margin revealed anti-phase variation; the high Delta SST(NEP) (weakening of the California Current) corresponded to the low SST at the Japan margin (the southward displacement of the NW Pacific subarctic boundary), and vice versa. This variation was synchronous with a model prediction of the tropical El Niño-Southern Oscillation behavior. These findings suggest that the intensity of the North Pacific High varied in response to precessional forcing, and also that the response has been linked with the changes of tropical ocean-atmosphere interactions.