1000 resultados para misturas solo-escória de alto-forno granulada moída e resistência mecânica


Relevância:

100.00% 100.00%

Publicador:

Resumo:

With advances in health care, has been na increase of demand for material that could replace the functions of the human body parts, thus evolved biomedic prosthesis which today are responsible for the constant improvement of the quality of life. The Titanium alloys are widely used as implants due to its properties, like high mechanical resistance, biocompatibility and corrosion resistance, and the addition alloying elements like Zirconium, may improve some of those properties. Such properties are related to the microstructure and consequently to the type of processing performed. The purpose of this dissertation was to characterize the experimental alloy Ti15Zr after route of processsing and heat treatment in order to extend the knowledge about this alloy. The latter has been abtained by fusion of pure metals in a arc melting furnace with an inert argon atmosphere. The material has been homogenized in a tube furnace at 950ºC for 24h and cold worked by swaging, after that, bars with 10 mm of diameter were obtained by the process of rotary forging. The samples were solubilized at 900º C for 2 hours and quenched in water. After that, 4 samples were submitted to the aging, at 400º C, 450º C, 500º C and 550º C. The microstructure and phase analysis was done by optical microscopy and X-rays diffraction (XRD), the mechanical characterization was carried out by microhardness test and finally, evaluation of corrosion resistance of the alloy by electrochemical tests. The XRD and the optical microscopy made it possible to analyze that the heat treatment influenced the phase shifting from α to α', and probably affected the alloy hardness, at the first aged sample at 500º Chas been a sudden increase in the value of hardness, probably by appearance of omega phase, unwanted phase to the medical application duo to great fragility, and finally ... (Complete abstract click electronic access below)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With advances in health care, has been na increase of demand for material that could replace the functions of the human body parts, thus evolved biomedic prosthesis which today are responsible for the constant improvement of the quality of life. The Titanium alloys are widely used as implants due to its properties, like high mechanical resistance, biocompatibility and corrosion resistance, and the addition alloying elements like Zirconium, may improve some of those properties. Such properties are related to the microstructure and consequently to the type of processing performed. The purpose of this dissertation was to characterize the experimental alloy Ti15Zr after route of processsing and heat treatment in order to extend the knowledge about this alloy. The latter has been abtained by fusion of pure metals in a arc melting furnace with an inert argon atmosphere. The material has been homogenized in a tube furnace at 950ºC for 24h and cold worked by swaging, after that, bars with 10 mm of diameter were obtained by the process of rotary forging. The samples were solubilized at 900º C for 2 hours and quenched in water. After that, 4 samples were submitted to the aging, at 400º C, 450º C, 500º C and 550º C. The microstructure and phase analysis was done by optical microscopy and X-rays diffraction (XRD), the mechanical characterization was carried out by microhardness test and finally, evaluation of corrosion resistance of the alloy by electrochemical tests. The XRD and the optical microscopy made it possible to analyze that the heat treatment influenced the phase shifting from α to α', and probably affected the alloy hardness, at the first aged sample at 500º Chas been a sudden increase in the value of hardness, probably by appearance of omega phase, unwanted phase to the medical application duo to great fragility, and finally ... (Complete abstract click electronic access below)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esse trabalho emprega o método para avaliar a abrasividade proposto por Golovanevskiy e Bearman (2008). Esse método, ensaio de abrasão por impacto deslizante (Gouging Abrasion Test), é realizado em condições de alta tensão/alto impacto de desgaste. O método consiste de uma ponteira cilíndrica com uma ponta cônica de 90º, que, em trajetória pendular, atinge uma amostra de rocha com energia de impacto de 300 J e velocidade da ordem de 5,2 m/s. O Gouging Abrasion Index (Gi) é calculado como sendo a média do diâmetro da ponta cônica, após desgaste, em milímetros e o resultado é multiplicado por 10. Esse trabalho verificou a adequabilidade do Gouging Abrasion Test, para um pequeno número de amostras de rocha, que representam, qualitativamente, os principais tipos de rocha encontrados em trabalhos de corte, perfuração e britagem no Brasil, e a sua correlação com outros ensaios consagrados como a resistência à compressão, o desgaste Amsler e a dureza Knoop. Essa análise mostrou alta correlação entre Gi e a dureza Knoop (R² = 0,94), baixa correlação com o desgaste

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Com o objetivo de estudar a influência da distribuição vertical de semente na variabilidade espacial da implantação de uma cultura de milho em diferentes sistemas de preparação do solo (mobilização convencional, mobilização mínima e sementeira direta), realizaram-se nas campanhas de 2011 e 2012 dois ensaios de campo na região do Alentejo. A avaliação da distribuição vertical de semente fez-se pela determinação da profundidade de sementeira medindo o comprimento do mesocótilo em plântulas de milho. Em sementeira direta foram ainda testadas duas velocidades de trabalho. Os resultados demonstraram que o melhor desempenho de distribuição vertical da semente foi conseguido em sementeira direta com o aumento de velocidade de trabalho de 4 para 6 km h-1 (com um coeficiente de variação, CV, de 10,1%). Uma ANOVA de duplo fator demonstrou que a resistência mecânica do solo e a velocidade de trabalho determinaram diferenças significativas na profundidade de sementeira; a profundidade de sementeira causou diferenças significativas no tempo médio (TME) e percentagem de emergência (PE) da cultura. Os elevados CV observados sugerem a necessidade de uma melhor calibração dos dispositivos de controlo de profundidade dos semeadores por parte dos operadores em campo ou o aperfeiçoamento dos mesmos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O transporte de gás e derivados de petróleo é realizado pelo uso de tubulações, denominadas de oleodutos ou gasodutos, que necessitam de elevados níveis de resistência mecânica e corrosão, aliadas a uma boa tenacidade à fratura e resistência à fadiga. A adição de elementos de liga nesses aços, Ti, V e Nb entre outros, é realizada para o atendimento destes níveis de resistência após o processamento termomecânico das chapas para fabricação destes dutos, utilizando-se a norma API 5L do American Petroleum Institute, API, para a classificação destes aços. A adição de elementos de liga em associação com o processamento termomecânico visa o refino de grão da microestrutura austenítica, o qual é transferido para a estrutura ferrítica resultante. O Brasil é o detentor das maiores reservas mundiais de nióbio, que tem sido apresentado como refinador da microestrutura mais eficiente que outros elementos, como o V e Ti. Neste trabalho dois aços, denominados Normal e Alto Nb foram estudados. A norma API propõe que a soma das concentrações de Nióbio, Vanádio e Titânio devem ser menores que 0,15% no aço. As concentrações no aço contendo mais alto Nb é de 0,107%, contra 0,082% do aço de composição normal, ou seja, ambos atendem o valor especificado pela norma API. Entretanto, os aços são destinados ao uso em dutovias pela PETROBRÁS que impõe limites nos elementos microligantes para os aços aplicados em dutovias. Deste modo estudos foram desenvolvidos para verificar se os parâmetros de resistência à tração, ductilidade, tenacidade ao impacto e resistência à propagação de trinca por fadiga, estariam em acordo com a norma API 5L grau X70 e com os resultados que outros pesquisadores têm encontrado para aços dessa classe. Ainda, como para a formação de uma dutovia os tubos são unidos uns aos outros por processo de soldagem (circunferencial), o estudo de fadiga foi estendido para as regiões da solda e zona termicamente afetada (ZTA). Como conclusão final observa-se que o aço API 5L X70 com Nb modificado, produzido conforme processo desenvolvido pela ArcelorMittal - Tubarão, apresenta os parâmetros de resistência e ductilidade em tração, resistência ao impacto e resistência a propagação de trinca em fadiga (PTF) similar aos aços API 5L X70 com teores de Nb = 0,06 % peso e aqueles da literatura com teores de Nb+Ti+V < 0,15% peso. O metal base, metal de solda e zona termicamente afetada apresentaram curvas da/dN x ΔK similares, com os parâmetros do material C e m, da equação de Paris, respectivamente na faixa de 3,3 - 4,2 e 1.3x10-10 - 5.0x10-10 [(mm/ciclo)/(MPa.m1/2)m].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Globally, increasing demands for biofuels have intensified the rate of land-use change (LUC) for expansion of bioenergy crops. In Brazil, the world\'s largest sugarcane-ethanol producer, sugarcane area has expanded by 35% (3.2 Mha) in the last decade. Sugarcane expansion has resulted in extensive pastures being subjected to intensive mechanization and large inputs of agrochemicals, which have direct implications on soil quality (SQ). We hypothesized that LUC to support sugarcane expansion leads to overall SQ degradation. To test this hypothesis we conducted a field-study at three sites in the central-southern region, to assess the SQ response to the primary LUC sequence (i.e., native vegetation to pasture to sugarcane) associated to sugarcane expansion in Brazil. At each land use site undisturbed and disturbed soil samples were collected from the 0-10, 10-20 and 20-30 cm depths. Soil chemical and physical attributes were measured through on-farm and laboratory analyses. A dataset of soil biological attributes was also included in this study. Initially, the LUC effects on each individual soil indicator were quantified. Afterward, the LUC effects on overall SQ were assessed using the Soil Management Assessment Framework (SMAF). Furthermore, six SQ indexes (SQI) were developed using approaches with increasing complexity. Our results showed that long-term conversion from native vegetation to extensive pasture led to soil acidification, significant depletion of soil organic carbon (SOC) and macronutrients [especially phosphorus (P)] and severe soil compaction, which creates an unbalanced ratio between water- and air-filled pore space within the soil and increases mechanical resistance to root growth. Conversion from pasture to sugarcane improved soil chemical quality by correcting for acidity and increasing macronutrient levels. Despite those improvements, most of the P added by fertilizer accumulated in less plant-available P forms, confirming the key role of organic P has in providing available P to plants in Brazilian soils. Long-term sugarcane production subsequently led to further SOC depletions. Sugarcane production had slight negative impacts on soil physical attributes compared to pasture land. Although tillage performed for sugarcane planting and replanting alleviates soil compaction, our data suggested that the effects are short-term with persistent, reoccurring soil consolidation that increases erosion risk over time. These soil physical changes, induced by LUC, were detected by quantitative soil physical properties as well as by visual evaluation of soil structure (VESS), an on-farm and user-friendly method for evaluating SQ. The SMAF efficiently detected overall SQ response to LUC and it could be reliably used under Brazilian soil conditions. Furthermore, since all of the SQI values developed in this study were able to rank SQ among land uses. We recommend that simpler and more cost-effective SQI strategies using a small number of carefully chosen soil indicators, such as: pH, P, K, VESS and SOC, and proportional weighting within of each soil sectors (chemical, physical and biological) be used as a protocol for SQ assessments in Brazilian sugarcane areas. The SMAF and SQI scores suggested that long-term conversion from native vegetation to extensive pasture depleted overall SQ, driven by decreases in chemical, physical and biological indicators. In contrast, conversion from pasture to sugarcane had no negative impacts on overall SQ, mainly because chemical improvements offset negative impacts on biological and physical indicators. Therefore, our findings can be used as scientific base by farmers, extension agents and public policy makers to adopt and develop management strategies that sustain and/or improving SQ and the sustainability of sugarcane production in Brazil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compatibility testing between a drilling fluid and a cement slurry is one of the steps before an operation of cementing oil wells. This test allows us to evaluate the main effects that contamination of these two fluids may cause the technological properties of a cement paste. The interactions between cement paste and drilling fluid, because its different chemical compositions, may affect the cement hydration reactions, damaging the cementing operation. Thus, we carried out the study of the compatibility of non-aqueous drilling fluid and a cement slurry additives. The preparation procedures of the non-aqueous drilling fluid, the cement paste and completion of compatibility testing were performed as set out by the oil industry standards. In the compatibility test is evaluated rheological properties, thickening time, stability and compressive strength of cement pastes. We also conducted analyzes of scanning electron microscopy and X-ray diffraction of the mixture obtained by the compatibility test to determine the microstructural changes in cement pastes. The compatibility test showed no visual changes in the properties of the cement paste, as phase separation. However, after the addition of nonaqueous drilling fluid to cement slurry there was an increased amount of plastic viscosity, the yield point and gel strength. Among the major causative factors can include: chemical reaction of the components present in the non-aqueous drilling fluid as the primary emulsifier, wetting agent and paraffin oil, with the chemical constituents of the cement. There was a reduction in the compressive strength of the cement paste after mixing with this drilling fluid. Thickening test showed that the oil wetting agent and high salinity of the non-aqueous fluid have accelerating action of the handle of the cement paste time. The stability of the cement paste is impaired to the extent that there is increased contamination of the cement slurry with the nonaqueous fluid. The X-ray diffraction identified the formation of portlandite and calcium silicate in contaminated samples. The scanning electron microscopy confirmed the development of the identified structures in the X-ray diffraction and also found the presence of wells in the cured cement paste. The latter, formed by the emulsion stability of the drilling fluid in the cement paste, corroborate the reduction of mechanical strength. The oil wetting agent component of the non-aqueous drilling fluid, the modified cement hydration processes, mainly affecting the setting time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrical ceramic insulators industry, uses noble raw materials such as siliceous and aluminous clays of white burning, in order to provide plasticity of the mass and contribute to electrical and mechanical properties required of the product, and feldspar with the flux function In literature references the composition of the masses indicates that the clay participates in percentage between 20 and 32, and feldspar 8 to 35, these materials have significant cost. In this research was performed the total replacement of commercial clay, for white burning clay from Santa Luzia region in southern Bahia and partial replacement of feldspar by ash residue of husk conilon coffee burning, from extreme south of Bahia. The objective of replacement these raw materials is to aver its technical feasibility and call attention for the embryo pole of ceramic industry for the existing in the south and extreme south of Bahia, which has significant reserves of noble raw materials such as clay white burning, kaolin, quartz and feldspar, and generates significant volume of gray husk conilon coffee as alternate flux. Clay Santa Luzia is prima noble material whose current commercial application is the production of white roofing. The residue of coffee husk ash is discarded near of production sites and is harmful to the environment. Phase diagrams and statistic design of experiments, were used for optimization and cost savings in research. The results confirmed the expectations of obtaining electrical ceramic insulators, with white burning clay of Santa Luzia and partial replacement up to 35.4% of feldspar, by treaty residue of conilon ash coffee husk burning. The statistic design that showed best results was for formulation with percentages of: clay 26.4 to 30.4%; kaolin 14.85 to 17.1%; feldspar 12.92 to 16.96%; R2 residue 7.08 to 9.2% and Quartz 32.5 to 38.75%, relative to the total mass of the mixture. The best results indicated; 0.2 to 1.4% apparent porosity , water absorption 0.1 to 0.7%, flexural strength 35 to 45MPa , dielectric strength 35-41 kV/cm , the transverse resistivity 8x109 2.5x1010 Ω.cm and for the dielectric constant ε/ε0 7 to 10.4, specification parameters for manufacturing ceramic electrical insulators of low and medium voltage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ANDRADE JR., T. E. et al. Infiltração de sal de alumínio em fibras de sisal para obtenção de fibras de alumina. Cerâmica, v.51, n.317, p.37-41.ISSN 0366-6913. Disponível em:. Acesso em: 06 out. 2010.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ANDRADE JR., T. E. et al. Infiltração de sal de alumínio em fibras de sisal para obtenção de fibras de alumina. Cerâmica, v.51, n.317, p.37-41.ISSN 0366-6913. Disponível em:. Acesso em: 06 out. 2010.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ta-Cu bulk composites combine high mechanical resistance of the Ta with high electrical and thermal conductivity of the Cu. These are important characteristics to electrical contacts, microwave absorber and heat skinks. However, the low wettability of Ta under Cu liquid and insolubility mutual these elements come hard sintering this composite. High-energy milling (HEM) produces composite powders with high homogeneity and refines the grain size. This work focus to study Ta-20wt%Cu composite powders prepared by mechanical mixture and HEM with two different conditions of milling in a planetary ball mill and then their sintering using hydrogen plasma furnace and a resistive vacuum furnace. After milling, the powders were pressed in a steel dye at a pressure of 200 MPa. The cylindrical samples pressed were sintered by resistive vacuum furnace at 10-4torr with a sintering temperature at 1100ºC / 60 minutes and with heat rate at 10ºC/min and were sintered by plasma furnace with sintering temperatures at 550, 660 and 800ºC without isotherm under hydrogen atmosphere with heat rate at 80ºC/min. The characterizations of the powders produced were analyzed by scanning electron microscopy (SEM), x-ray diffraction (XRD) and laser granulometry. After the sintering the samples were analyzed by SEM, XRD and density and mass loss tests. The results had shown that to high intense milling condition produced composite particles with shorter milling time and amorphization of both phases after 50 hours of milling. The composite particles can produce denser structure than mixed powders, if heated above the Cu melting point. After the Cu to arrive in the melting point, liquid copper leaves the composite particles and fills the pores

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The system in-Ceram Alumina, produced by VITA, consists in a technique of prepare of a substructure of ceramics to dental crowns. First burning is made in the alumina decanted by slip casting process under a stone die that reproduces the tooth prepared to receive a crown. In a second burning, alumina is infiltrated by vitreous system, giving to this set a high mechanic resistance. In this work, it s made a study of the composition of a new infiltrating material more used nowadays, giving to alumina desirable mechanics proprieties to its using like substructure of support to ceramic s crown used in the market today. The addition of Lanthanum oxide (frit A) and calcium oxide (frit B) was made in attempt to increase the viscosity of LZSA and to reduce fusion temperature. The frits were put over samples of alumina and took to the tubular oven to 1400ºC under vacuum for two groups (groups 1 and 2). For another two groups (groups 3 and 4) it was made a second infiltration, following the same parameters of the first. A fifth group was utilized like group of control where the samples of pure alumina were not submitted to any infiltrating process. Glasses manifested efficient both in quality and results of analysis of mechanic resistance, being perfectly compatible with oral environment in this technical requisite. The groups that made a second infiltration had he best results of fracture toughness, qualify the use in the oral cavity in this technical question. The average of results achieved for mechanic resistance to groups 1, 2, 3, 4 and 5 were respectively 98 MPa, 90 MPa, 144 MPa, 236 MPa and 23 MPa

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Civil e Ambiental, 2016.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Piauí state is a major producer of traditional red ceramic burning as bricks, tiles and ceramic tiles, with its main production center located in the city of Teresina. The state has large reserves of raw materials that can be used in the ceramic coating as clays, quartz, talc and carbonates. However, in the preparation of ceramic bodies using only a mixture of clays with different characteristics. The study aims to evaluate the effect of adding two types of carbonates in the ceramic semiporous mass coating produced in Piauí and then to verify the potential use of these carbonates as supplementary raw material product manufactured or the feasibility of obtaining a ceramic plate that meets the specifications for the porous coating. For this, were characterized the ceramic Piauí coating mass, a calcitic carbonate and a dolomitic, were made in the levels of 2, 4, 8, 16, and 32%. The masses were formed by pressing and burneds in two environments: a laboratory furnace (1080°C, 1120°C, 1140°C, and 1160°C) and an industrial furnace (1140°C). Then, following tests of linear shrinkage water absorption, apparent porosity, bulk density and flexural strength. Furthermore, the fired specimens were tested for their macrostructure and microstructure. The results showed the possibility of using the carbonate in ceramic mass flooring produced in Piauí, as added in small proportions improved dimensional stability and increased mechanical strength of ceramics pieces. It also proved itself possible to produce porous coating when added in higher levels

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nickel alloys are frequently used in applications that require resistance at high temperatures associated with resistance to corrosion. Alloys of Ni-Si-C can be obtained by means of powder metallurgy in which powder mixtures are made of metallic nickel powders with additions of various alloying carriers for such were used in this study SiC, Si3N4 or Si metal with graphite. Carbonyl Ni powder with mean particle size of 11 mM were mixed with 3 wt% of SiC powders with an average particle size of 15, 30 and 50 μm and further samples were obtained containing 4 to 5% by mass of SiC with average particle size of 15 μm. Samples were also obtained by varying the carrier alloy, these being Si3N4 powder with graphite, with average particle size of 1.5 and 5 μm, respectively. As a metallic Si graphite with average particle size of 12.5 and 5 μm, respectively. The reference material used was nickel carbonyl sintered without adding carriers. Microstructural characterization of the alloys was made by optical microscopy and scanning electron microscopy with semi-quantitative chemical analysis. We determined the densities of the samples and measurement of microhardness. We studied the dissociation of carriers alloy after sintering at 1200 ° C for 60 minutes. Was evaluated also in the same sintering conditions, the influence of the variation of average particle size of the SiC carrier to the proportion of 3% by mass. Finally, we studied the influence of variation of the temperatures of sintering at 950, 1080 and 1200 ° C without landing and also with heights of 30, 60, 120 and 240 minutes for sintering where the temperature was 950 °C. Dilatometry curves showed that the SiC sintered Ni favors more effectively than other carriers alloy analyzed. SiC with average particle size of 15 μm active sintering the alloy more effectively than other SiC used. However, with the chemical and morphological analyzes for all leagues, it was observed that there was dissociation of SiC and Si3N4, as well as diffusion of Si in Ni matrix and carbon cluster and dispersed in the matrix, which also occurred for the alloys with Si carriers and metallic graphite. So the league that was presented better results containing Si Ni with graphite metallic alloy as carriers, since this had dispersed graphite best in the league, reaching the microstructural model proposed, which is necessary for material characteristic of solid lubricant, so how we got the best results when the density and hardness of the alloy