924 resultados para microprocessor-based control
Resumo:
Background: Clinical trials have demonstrated that selected secondary prevention medications for patients after acute myocardial infarction (AMI) reduce mortality. Yet, these medications are generally underprescribed in daily practice, and older people are often absent from drug trials. Objectives: To examine the relationship between adherence to evidence-based (EB) drugs and post-AMI mortality, focusing on the effects of single therapy and polytherapy in very old patients (≥80 years) compared with elderly and adults (<80 years). Methods: Patients hospitalised for AMI between 01/01/2008 and 30/06/2011 and resident in the Local Health Authority of Bologna were followed up until 31/12/2011. Medication adherence was calculated as the proportion of days covered for filled prescriptions of angiotensin-converting enzyme inhibitors (ACEIs)/angiotensin receptor blockers (ARBs), β-blockers, antiplatelet drugs, and statins. We adopted a risk set sampling method, and the adjusted relationship between medication adherence (PDC≥75%) and mortality was investigated using conditional multiple logistic regression. Results: The study population comprised 4861 patients. During a median follow-up of 2.8 years, 1116 deaths (23.0%) were observed. Adherence to the 4 EB drugs was 7.1%, while nonadherence to any of the drugs was 19.7%. For both patients aged ≥80 years and those aged <80 years, rate ratios of death linearly decreased as the number of EB drugs taken increased. There was a significant inverse relationship between adherence to each of 4 medications and mortality, although its magnitude was higher for ACEIs/ARBs (adj. rate ratio=0.60, 95%CI=0.52–0.69) and statins (0.60, 0.50–0.72), and lower for β-blockers (0.75, 0.61–0.92) and antiplatelet drugs (0.73, 0.63–0.84). Conclusions: The beneficial effect of EB polytherapy on long-term mortality following AMI is evident also in nontrial older populations. Given that adherence to combination therapies is largely suboptimal, the implementation of strategies and initiatives to increase the use of post-AMI secondary preventive medications in old patients is crucial.
Resumo:
Laser Shock Peening (LSP) is a surface enhancement treatment which induces a significant layer of beneficial compressive residual stresses of up to several mm underneath the surface of metal components in order to improve the detrimental effects of the crack growth behavior rate in it. The aim of this thesis is to predict the crack growth behavior in metallic specimens with one or more stripes which define the compressive residual stress area induced by the Laser Shock Peening treatment. The process was applied as crack retardation stripes perpendicular to the crack propagation direction with the object of slowing down the crack when approaching the peened stripes. The finite element method has been applied to simulate the redistribution of stresses in a cracked model when it is subjected to a tension load and to a compressive residual stress field, and to evaluate the Stress Intensity Factor (SIF) in this condition. Finally, the Afgrow software is used to predict the crack growth behavior of the component following the Laser Shock Peening treatment and to detect the improvement in the fatigue life comparing it to the baseline specimen. An educational internship at the “Research & Technologies Germany – Hamburg” department of AIRBUS helped to achieve knowledge and experience to write this thesis. The main tasks of the thesis are the following: •To up to date Literature Survey related to “Laser Shock Peening in Metallic Structures” •To validate the FE model developed against experimental measurements at coupon level •To develop design of crack growth slowdown in Centered Cracked Tension specimens based on residual stress engineering approach using laser peened strip transversal to the crack path •To evaluate the Stress Intensity Factor values for Centered Cracked Tension specimens after the Laser Shock Peening treatment via Finite Element Analysis •To predict the crack growth behavior in Centered Cracked Tension specimens using as input the SIF values evaluated with the FE simulations •To validate the results by means of experimental tests
Resumo:
A new control scheme has been presented in this thesis. Based on the NonLinear Geometric Approach, the proposed Active Control System represents a new way to see the reconfigurable controllers for aerospace applications. The presence of the Diagnosis module (providing the estimation of generic signals which, based on the case, can be faults, disturbances or system parameters), mean feature of the depicted Active Control System, is a characteristic shared by three well known control systems: the Active Fault Tolerant Controls, the Indirect Adaptive Controls and the Active Disturbance Rejection Controls. The standard NonLinear Geometric Approach (NLGA) has been accurately investigated and than improved to extend its applicability to more complex models. The standard NLGA procedure has been modified to take account of feasible and estimable sets of unknown signals. Furthermore the application of the Singular Perturbations approximation has led to the solution of Detection and Isolation problems in scenarios too complex to be solved by the standard NLGA. Also the estimation process has been improved, where multiple redundant measuremtent are available, by the introduction of a new algorithm, here called "Least Squares - Sliding Mode". It guarantees optimality, in the sense of the least squares, and finite estimation time, in the sense of the sliding mode. The Active Control System concept has been formalized in two controller: a nonlinear backstepping controller and a nonlinear composite controller. Particularly interesting is the integration, in the controller design, of the estimations coming from the Diagnosis module. Stability proofs are provided for both the control schemes. Finally, different applications in aerospace have been provided to show the applicability and the effectiveness of the proposed NLGA-based Active Control System.
Resumo:
To date, few risk factors for childhood acute lymphoblastic leukemia (ALL) have been confirmed and the scientific literature is full of controversial "evidence." We examined if family characteristics, particularly maternal and paternal age and number of older siblings, were risk factors for childhood acute lymphoblastic leukemia (ALL).
Resumo:
To determine the local control and complication rates for children with papillary and/or macular retinoblastoma progressing after chemotherapy and undergoing stereotactic radiotherapy (SRT) with a micromultileaf collimator.
Resumo:
This paper aims at the development and evaluation of a personalized insulin infusion advisory system (IIAS), able to provide real-time estimations of the appropriate insulin infusion rate for type 1 diabetes mellitus (T1DM) patients using continuous glucose monitors and insulin pumps. The system is based on a nonlinear model-predictive controller (NMPC) that uses a personalized glucose-insulin metabolism model, consisting of two compartmental models and a recurrent neural network. The model takes as input patient's information regarding meal intake, glucose measurements, and insulin infusion rates, and provides glucose predictions. The predictions are fed to the NMPC, in order for the latter to estimate the optimum insulin infusion rates. An algorithm based on fuzzy logic has been developed for the on-line adaptation of the NMPC control parameters. The IIAS has been in silico evaluated using an appropriate simulation environment (UVa T1DM simulator). The IIAS was able to handle various meal profiles, fasting conditions, interpatient variability, intraday variation in physiological parameters, and errors in meal amount estimations.
Resumo:
This is the first part of a study investigating a model-based transient calibration process for diesel engines. The motivation is to populate hundreds of parameters (which can be calibrated) in a methodical and optimum manner by using model-based optimization in conjunction with the manual process so that, relative to the manual process used by itself, a significant improvement in transient emissions and fuel consumption and a sizable reduction in calibration time and test cell requirements is achieved. Empirical transient modelling and optimization has been addressed in the second part of this work, while the required data for model training and generalization are the focus of the current work. Transient and steady-state data from a turbocharged multicylinder diesel engine have been examined from a model training perspective. A single-cylinder engine with external air-handling has been used to expand the steady-state data to encompass transient parameter space. Based on comparative model performance and differences in the non-parametric space, primarily driven by a high engine difference between exhaust and intake manifold pressures (ΔP) during transients, it has been recommended that transient emission models should be trained with transient training data. It has been shown that electronic control module (ECM) estimates of transient charge flow and the exhaust gas recirculation (EGR) fraction cannot be accurate at the high engine ΔP frequently encountered during transient operation, and that such estimates do not account for cylinder-to-cylinder variation. The effects of high engine ΔP must therefore be incorporated empirically by using transient data generated from a spectrum of transient calibrations. Specific recommendations on how to choose such calibrations, how many data to acquire, and how to specify transient segments for data acquisition have been made. Methods to process transient data to account for transport delays and sensor lags have been developed. The processed data have then been visualized using statistical means to understand transient emission formation. Two modes of transient opacity formation have been observed and described. The first mode is driven by high engine ΔP and low fresh air flowrates, while the second mode is driven by high engine ΔP and high EGR flowrates. The EGR fraction is inaccurately estimated at both modes, while EGR distribution has been shown to be present but unaccounted for by the ECM. The two modes and associated phenomena are essential to understanding why transient emission models are calibration dependent and furthermore how to choose training data that will result in good model generalization.
Resumo:
This is the second part of a study investigating a model-based transient calibration process for diesel engines. The first part addressed the data requirements and data processing required for empirical transient emission and torque models. The current work focuses on modelling and optimization. The unexpected result of this investigation is that when trained on transient data, simple regression models perform better than more powerful methods such as neural networks or localized regression. This result has been attributed to extrapolation over data that have estimated rather than measured transient air-handling parameters. The challenges of detecting and preventing extrapolation using statistical methods that work well with steady-state data have been explained. The concept of constraining the distribution of statistical leverage relative to the distribution of the starting solution to prevent extrapolation during the optimization process has been proposed and demonstrated. Separate from the issue of extrapolation is preventing the search from being quasi-static. Second-order linear dynamic constraint models have been proposed to prevent the search from returning solutions that are feasible if each point were run at steady state, but which are unrealistic in a transient sense. Dynamic constraint models translate commanded parameters to actually achieved parameters that then feed into the transient emission and torque models. Combined model inaccuracies have been used to adjust the optimized solutions. To frame the optimization problem within reasonable dimensionality, the coefficients of commanded surfaces that approximate engine tables are adjusted during search iterations, each of which involves simulating the entire transient cycle. The resulting strategy, different from the corresponding manual calibration strategy and resulting in lower emissions and efficiency, is intended to improve rather than replace the manual calibration process.
Resumo:
BACKGROUND: In contrast to hypnosis, there is no surrogate parameter for analgesia in anesthetized patients. Opioids are titrated to suppress blood pressure response to noxious stimulation. The authors evaluated a novel model predictive controller for closed-loop administration of alfentanil using mean arterial blood pressure and predicted plasma alfentanil concentration (Cp Alf) as input parameters. METHODS: The authors studied 13 healthy patients scheduled to undergo minor lumbar and cervical spine surgery. After induction with propofol, alfentanil, and mivacurium and tracheal intubation, isoflurane was titrated to maintain the Bispectral Index at 55 (+/- 5), and the alfentanil administration was switched from manual to closed-loop control. The controller adjusted the alfentanil infusion rate to maintain the mean arterial blood pressure near the set-point (70 mmHg) while minimizing the Cp Alf toward the set-point plasma alfentanil concentration (Cp Alfref) (100 ng/ml). RESULTS: Two patients were excluded because of loss of arterial pressure signal and protocol violation. The alfentanil infusion was closed-loop controlled for a mean (SD) of 98.9 (1.5)% of presurgery time and 95.5 (4.3)% of surgery time. The mean (SD) end-tidal isoflurane concentrations were 0.78 (0.1) and 0.86 (0.1) vol%, the Cp Alf values were 122 (35) and 181 (58) ng/ml, and the Bispectral Index values were 51 (9) and 52 (4) before surgery and during surgery, respectively. The mean (SD) absolute deviations of mean arterial blood pressure were 7.6 (2.6) and 10.0 (4.2) mmHg (P = 0.262), and the median performance error, median absolute performance error, and wobble were 4.2 (6.2) and 8.8 (9.4)% (P = 0.002), 7.9 (3.8) and 11.8 (6.3)% (P = 0.129), and 14.5 (8.4) and 5.7 (1.2)% (P = 0.002) before surgery and during surgery, respectively. A post hoc simulation showed that the Cp Alfref decreased the predicted Cp Alf compared with mean arterial blood pressure alone. CONCLUSION: The authors' controller has a similar set-point precision as previous hypnotic controllers and provides adequate alfentanil dosing during surgery. It may help to standardize opioid dosing in research and may be a further step toward a multiple input-multiple output controller.
Resumo:
For a microgrid with a high penetration level of renewable energy, energy storage use becomes more integral to the system performance due to the stochastic nature of most renewable energy sources. This thesis examines the use of droop control of an energy storage source in dc microgrids in order to optimize a global cost function. The approach involves using a multidimensional surface to determine the optimal droop parameters based on load and state of charge. The optimal surface is determined using knowledge of the system architecture and can be implemented with fully decentralized source controllers. The optimal surface control of the system is presented. Derivations of a cost function along with the implementation of the optimal control are included. Results were verified using a hardware-in-the-loop system.
Resumo:
This thesis will present strategies for the use of plug-in electric vehicles on smart and microgrids. MATLAB is used as the design tool for all models and simulations. First, a scenario will be explored using the dispatchable loads of electric vehicles to stabilize a microgrid with a high penetration of renewable power generation. Grid components for a microgrid with 50% photovoltaic solar production will be sized through an optimization routine to maintain storage system, load, and vehicle states over a 24-hour period. The findings of this portion are that the dispatchable loads can be used to guard against unpredictable losses in renewable generation output. Second, the use of distributed control strategies for the charging of electric vehicles utilizing an agent-based approach on a smart grid will be studied. The vehicles are regarded as additional loads to a primary forecasted load and use information transfer with the grid to make their charging decisions. Three lightweight control strategies and their effects on the power grid will be presented. The findings are that the charging behavior and peak loads on the grid can be reduced through the use of distributed control strategies.
Resumo:
In power electronic basedmicrogrids, the computational requirements needed to implement an optimized online control strategy can be prohibitive. The work presented in this dissertation proposes a generalized method of derivation of geometric manifolds in a dc microgrid that is based on the a-priori computation of the optimal reactions and trajectories for classes of events in a dc microgrid. The proposed states are the stored energies in all the energy storage elements of the dc microgrid and power flowing into them. It is anticipated that calculating a large enough set of dissimilar transient scenarios will also span many scenarios not specifically used to develop the surface. These geometric manifolds will then be used as reference surfaces in any type of controller, such as a sliding mode hysteretic controller. The presence of switched power converters in microgrids involve different control actions for different system events. The control of the switch states of the converters is essential for steady state and transient operations. A digital memory look-up based controller that uses a hysteretic sliding mode control strategy is an effective technique to generate the proper switch states for the converters. An example dcmicrogrid with three dc-dc boost converters and resistive loads is considered for this work. The geometric manifolds are successfully generated for transient events, such as step changes in the loads and the sources. The surfaces corresponding to a specific case of step change in the loads are then used as reference surfaces in an EEPROM for experimentally validating the control strategy. The required switch states corresponding to this specific transient scenario are programmed in the EEPROM as a memory table. This controls the switching of the dc-dc boost converters and drives the system states to the reference manifold. In this work, it is shown that this strategy effectively controls the system for a transient condition such as step changes in the loads for the example case.