316 resultados para micronutrient
Resumo:
Abundant and diverse polycystine radiolarian faunas from ODP Leg 181, Site 1123 (0-1.2 Ma at ~21 kyr resolution) and Site 1124 (0-0.6 Ma, ~5 kyr resolution, with a disconformity between 0.42-0.22 Ma) have been used to infer Pleistocene-Holocene paleoceanographic changes north of the Subtropical Front (STF), offshore eastern New Zealand, southwest Pacific. The abundance of warm-water taxa relative to cool-water taxa was used to determine a radiolarian paleotemperature index, the Subtropical (ST) Index. ST Index variations show strong covariance with benthic foraminifera oxygen isotope records from Site 1123 and exhibit similar patterns through Glacial-Interglacial (G-I) cycles of marine isotope stages (MIS) 15-1. At Site 1123, warm-water taxa peak in abundance during Interglacials (reaching ~8% of the total fauna). Within Glacials cool-water taxa increase to ~15% (MIS2) of the fauna. Changes in radiolarian assemblages at Site 1124 indicate similar but much better resolved trends through MIS15-12 and 7-1. Pronounced increases in warm-water taxa occur at the onset of Interglacials (reaching ~15% of the fauna), whereas the abundance of cool-water taxa increases in Glacials peaking in MIS2 (~17% of the fauna). Overall warmer conditions at Site 1124 during the last 600 kyrs indicate sustained influence of the subtropical, warm East Cape Current (ECC). During Interglacials radiolarian assemblages suggest an increase in marine productivity at both sites which might be due to predominance of micronutrient-rich Subtropical Water. At Site 1123, an increased abundance of deep-dwelling taxa in MIS 13 and 9 suggests enhanced vertical mixing. During Glacials, reduced vigour of ECC flow combined with northward expansion of cool, micronutrient-poor Subantarctic Water occurs. Only at Site 1123 there is evidence of a longitudinal shift of the STF, reaching as far north as 41°S.
Resumo:
Few Micronesian foods have been analyzed for nutrient content. Information is needed on locally grown, culturally acceptable foods that could be promoted to alleviate, vitamin A deficiency in the Federated States of Micronesia. Using an ethnographic approach that included key informant interviews and observation, Micronesian cultivars with potential for high-carotenoid content according to their coloration were identified. These cultivars of banana, giant swamp taro, breadfruit and other foods were analyzed for alpha- and beta-carotene using high-performance liquid chromatography (HPLC) and for nine minerals using inductively coupled plasma (ICP). A wide range of provitamin A carotenoid levels was found in banana, taro, and breadfruit cultivars, some containing very high levels (beta-carotene content from 515 to 6360 mug/100 g in banana, 260 to 1651 mug/100 g in taro, and 295 to 868 mug/100 g in breadfruit, edible portion). Other cultivars contained moderate levels, but as they can be eaten in large quantities, they may contribute significantly to vitamin A status. The taro samples contained very high levels of zinc (mean 5.9 mg/100 g) and significant levels of other minerals (mean content of calcium was 120 mg/100 g). These staples with cultural acceptability and high availability potentially could play a role in vitamin A, micronutrient, and chronic disease programs in the Pacific. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
To investigate the hypothesis that the micronutrient ascorbic acid can modulate the functional genome, T cells (CCRF-HSB2) were treated with ascorbic acid (up to 150 μM) for up to 24 h. Protein expression changes were assessed by two-dimensional electrophoresis. Forty-one protein spots which showed greater than two-fold expression changes were subject to identification by matrix-assisted laser desorption ionisation time of flight MS. The confirmed protein identifications were clustered into five groups; proteins were associated with signalling, carbohydrate metabolism, apoptosis, transcription and immune function. The increased expression of phosphatidylinositol transfer protein (promotes intracellular signalling) within 5 min of ascorbic acid treatment was confirmed by Western blotting. Together, these observations suggest that ascorbic acid modulates the T cell proteome in a time- and dose-dependent manner and identify molecular targets for study following antioxidant supplementation in vivo.
Resumo:
Vitamin and mineral deficiencies are common in developing countries, but also occur in developed countries. We review micronutrient deficiencies for the major vitamins A, cobalamin (B-12), biotin (vitamin H), vitamins C and E, as well as the minerals iron, and zinc, in the developed world, in terms of their relationship to systemic health and any resulting ocular disease and/or visual dysfunction. A knowledge of these effects is important as individuals with consequent poor ocular health and reduced visual function may present for ophthalmic care.
Resumo:
Periodontitis, a ubiquitous chronic inflammatory disease, is associated with reduced antioxidant defences and neutrophil hyperactivity in terms of reactive oxygen species (ROS) generation. Its phenotype is thus characterized by oxidative stress. We have determined the effect of antioxidant micronutrients ascorbate and α-tocopherol on neutrophil ROS generation. Peripheral neutrophils from periodontally-healthy individuals (n = 20) were challenged with phorbol myristate acetate, IgG-opsonised Staphylococcus aureus, Fusobacterium nucleatum or PBS in the presence and absence of micronutrients (50 μM). Total and extracellular ROS were measured by luminol and isoluminol chemiluminescence respectively. Total and extracellular unstimulated, baseline ROS generation was unaffected by α-tocopherol, but inhibited by ascorbate and a combination of both micronutrients. Fcγ-receptor (Fcγ-R)-stimulated total or extracellular ROS generation was not affected by the presence of individual micronutrients. However, the combination significantly reduced extracellular FcγR-stimulated ROS release. Neither micronutrient inhibited TLR-stimulated total ROS, but the combination caused inhibition. Ascorbate and the micronutrient combination, but not α-tocopherol, inhibited extracellular ROS release by TLR-stimulated cells. Such micronutrient effects in vivo could be beneficial in reducing collateral tissue damage in chronic inflammatory diseases, such as periodontitis, while retaining immune-mediated neutrophil function. © The Author(s) 2012 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Resumo:
Full editorial: A recent study evaluating the long-term (2 yr) weight reducing efficacy of different types of diets – high or low in carbohydrates (CHOs), protein or fat - confirmed that it is calorie deficit not dietary composition that determines the loss and maintenance of body weight.1 Is there any advantage in following a specific weight loss diet? Short-term use of nutritionally complete commercially available (very) low calorie diets has benefited people with diabetes when supported by education programmes.2 Initial weight loss has been encouraging with some fad diets eg the Atkins and the South Beach diets, but these diets are difficult to maintain and there are safety issues regarding their short- and long-term use – especially in people with diabetes.3 The types of macronutrients consumed can have a considerable impact on glycaemic control and energy metabolism. Although a low CHO diet additionally enhances initial weight loss by reducing cellular water content, if fat is not proportionally reduced the diet may not benefit the lipid profile for vascular disease risk. High fat and high protein diets – which are simultaneously low in CHOs – increase vulnerability to hypoglycaemia in people taking insulin secretagogues or on insulin therapy, and may promote excess fat metabolism and ketogenesis, particularly in people vulnerable to lack of insulin. Very low protein diets are not recommended as lean body mass tends to be reduced in diabetes. Altering the macronutrient balance has implications for the micronutrient mix: deficiencies are higher if more foods are excluded and conversely specific micronutrient excess can occur with some fad diets. The altered nutrient mix affects intestinal fauna and flora, and gut motility and glycaemic control are influenced by the quantity and type of fibre consumed. Support programmes help individuals achieve long term weight loss and there is mounting evidence that community schemes which educate and promote lifestyle changes may stem the rising tide of obesity and consequent type 2 diabetes.4 Consuming smaller portions of a balanced diet (and adjusting antidiabetic medications accordingly) will create an energy deficit to promote healthy weight loss. Increased movement/exercise will enhance this energy deficit. Knowledge (eg 1g fat has 2.25 times more energy than 1g CHO) allows sensible food choices and compensation for inclusion of small volumes of ‘naughty but nice’ foods. Ultimately weight control requires self control. References 1. Sacks FM, Bray GA, Carey VJ et al. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N Engl J Med 2009;360:859–73. 2. Bennett P. Obesity, diabetes and VLCD. Br J Diabetes Vasc Dis 2004;4:328–30. 3. Baldwin EJ. Fad diets in diabetes. Br J Diabetes Vasc DIs 2004;4:333–7. 4. Romon M, Lommoz A, Tafflet M et al. Downward trends in the prevalence of childhood overweight in the setting of 12-year school- and community-based programmes. Public Health Nutr 2008; Dec 28, 1–8 [Epub ahead of print].
Resumo:
Abstract Nutritional management of blood glucose levels is a strategic target in the prevention and management of type 2 diabetes mellitus (T2DM). To implement such an approach it is essential to understand the effect of food on glycaemic regulation and on the underlying metabolic derangements. This comprehensive review summarises the results from human dietary interventions exploring the impact of dietary components on blood glucose levels. Included are the major macronutrients; carbohydrate, protein and fat, micronutrient vitamins and minerals, non-nutrient phytochemicals and additional foods including low-calorie sweeteners, vinegar and alcohol. Based on the evidence presented in this review, it is clear that dietary components have significant and clinically relevant effects on blood glucose modulation. An integrated approach that includes reducing excess body weight, increased physical activity along with a dietary regime to regulate blood glucose levels will not only be advantages in T2DM management, but will benefit the health of the population and limit the increasing worldwide incidence of T2DM.
Resumo:
Background and Objectives: Nutritional management of blood glucose levels is a strategic target in the prevention and management of type 2 diabetes mellitus (T2DM), applicable across the population. To implement a successful strategy it is essential to understand the impact of dietary modulation on the postprandial rise in blood glucose concentrations. Methods: Using the highest quality data, a systematic and comprehensive literature review was undertaken. Included in this review were the major macronutrients (carbohydrate, pro-tein, fat), micronutrient vitamins and minerals, non-nutrient phytochemicals and additional foods such as low-calorie sweeteners, vinegar and alcohol. Results: The strongest corroboration of efficacy for improving glucose homeostasis was for insoluble and moderately fermentable cereal-based fiber and mono-unsaturated fatty acids as replacement of saturated fat. Postprandial glycaemia was decreased by intake of viscous soluble fiber and the predominant mechanism of action was considered to be by delaying absorption of co-ingested carbohydrates. There was weaker but substantial evidence that certain phytochemical-rich foods were likely to be effective. This may be associated with the su-ggestion that the gut microbiota plays an important role in me-tabolic regulation, which includes provision of phytochemical and other metabolites. Conclusions: Based on the evidence, it is clear that dietary components have significant and clinically relevant effects on blood glucose modulation. This suggests that employing a dietary regimen to attenuate the postprandial rise in blood glucose levels along with previously identified targets (reducing excess body weight and an increase in physical activity) will benefit the health of the population and limit the increasing worldwide incidence of T2D.
Resumo:
The primary purpose of these studies was to determine the effect of planning menus using the Institute of Medicine's (IOMs) Simple Nutrient Density Approach on nutrient intakes of long-term care (LTC) residents. In the first study, nutrient intakes of 72 subjects were assessed using Dietary Reference Intakes (DRIs) and IOM methodology. The intake distributions were used to set intake and menu planning goals. In the second study, the facility's regular menus were modified to meet the intake goals for vitamin E, magnesium, zinc, vitamin D and calcium. An experiment was used to test whether the modified menu resulted in intakes of micronutrients sufficient to achieve a low prevalence (<3%) of nutrient inadequacies. Three-day weighed food intakes for 35 females were adjusted for day-to-day variations in order to obtain an estimate of long-term average intake and to estimate the proportion of residents with inadequate nutrient intakes. ^ In the first study, the prevalence of inadequate intakes was determined to be between 65-99% for magnesium, vitamin E, and zinc. Mean usual intakes of Vitamin D and calcium were far below the Adequate Intakes (AIs). In the experimental study, the prevalence of inadequacies was reduced to <3% for zinc and vitamin E but not magnesium. The groups' mean usual intake from the modified menu met or exceeded the AI for calcium but fell short for vitamin D. Alternatively, it was determined that addition of a multivitamin and mineral (MVM) supplement to intakes of the regular menu could be used to achieve goals for vitamin E, zinc and vitamin D but not calcium and magnesium. ^ A combination of menu modification and MVM supplementation may be necessary to achieve a low prevalence of micronutrient inadequacies among LTC residents. Menus should be planned to optimize intakes of those nutrients that are low in an MVM, such as calcium, magnesium, and potassium. A MVM supplement should be provided to fill the gap for nutrients not provided in sufficient amounts by the diet, such as vitamin E and vitamin D. ^
Resumo:
Background: Arterial pulse pressure, the difference between systolic and diastolic blood pressure, has been used as an indicator (surrogate measure) of arterial stiffness. High arterial pulse pressure (> 40) has been associated with increased cardiovascular disease and mortality. Several clinical trials have reported that the proportion of calories from carbohydrate has an effect on blood pressure. The primary objective of this study was to assess arterial pulse pressure and its association with carbohydrate quantity and quality (glycemic load) with diabetes status for a Cuban American population. Methods: A single point analysis included 367 participants. There was complete data for 365 (190 with and 175 without type 2 diabetes). The study was conducted in the investigator’s laboratory located in Miami, Florida. Demographic, dietary, anthropometric and laboratory data were collected. Arterial pulse pressure was calculated by the formula systolic minus the diastolic blood pressure. Glycemic load, fructose, sucrose, percent of average daily calories from carbohydrate, fat and protein, grams of fiber and micronutrient intakes were calculated from a validated food frequency questionnaire. Results: The mean arterial pulse pressure was significantly higher in participants with (52.9 ± 12.4) than without (48.6 ± 13.4) type 2 diabetes. The odds of persons with diabetes having high arterial pulse pressure (>40) was 1.85 (95% CI =1.09, 3.13); p=0.023. For persons with type 2 diabetes higher glycemic load was associated with lower arterial pulse pressure. Conclusions: Arterial pulse pressure and diet are modifiable risk factors of cardiovascular disease. Arterial pulse pressure may be associated with carbohydrate intake differently considering diabetes status. Results may be due to individuals with diabetes following dietary recommendations. The findings of this study suggest clinicians take into consideration how medical condition, ethnicity and diet are associated with arterial pulse pressure before developing a medical nutrition therapy plan in collaboration with the client.
Resumo:
Micronutrient insufficiency, low dietary fiber, and high saturated fat intake have been associated with chronic diseases. Micronutrient insufficiencies may exacerbate poor health outcomes for persons with type 2 diabetes and minority status. We examined dietary intakes using the Recommended Dietary Allowances (RDAs) of micronutrients, and Adequate Intakes (AIs) of fiber, and Dietary Guidelines for Americans (DGA) for saturated fat in Haitian-, African-, and Cuban- Americans (n = 868), approximately half of each group with type 2 diabetes. Insufficient intakes of vitamins D and E and calcium were found in over 40 % of the participants. Over 50 % of African- and Cuban- Americans consumed over 10 % of calories from saturated fat. Haitian-Americans were more likely to have insufficiencies in iron, B-vitamins, and vitamins D and E, and less likely to have inadequate intake of saturated fat as compared to Cuban-Americans. Vitamin D insufficiency was more likely for Haitian-Americans as compared to African- Americans. Diabetes status alone did not predict micronutrient insufficiencies; however, Haitian-Americans with no diabetes were more likely to be insufficient in calcium. Adjusting for age, gender, energy, smoking, physical activity, access to health care, and education negated the majority of micronutrient insufficiency differences by ethnicity. These findings suggest that policies are needed to ensure that low-cost, quality produce can be accessed regardless of neighborhood and socioeconomic status.
Resumo:
The term vitamin E refers to a group of eight molecular compounds which differ in structure and bioavailability, and the RRR-alpha-tocopherol more biologically active form. The composition of vitamin E in breast milk undergoes variations during lactation, colostrum and milk richer in this micronutrient compared to transitional and mature milk. Newborns, especially premature infants are more susceptible to vitamin E deficiency and to prevent the damage caused by this deficiency has been proposed supplementation of neonates with this micronutrient, however, there is no consensus to carry out this intervention. Thus, maternal supplementation with RRRalpha-tocopherol in the postpartum period can be a good alternative to try to raise the alpha-tocopherol levels in breast milk and therefore provide the premature newborn adequate amounts of vitamin E. This study to evaluate the effect of supplementation with 400 UI acetate RRR-alpha-tocopherol in women with premature births, on the concentration of alpha-tocopherol in breast milk colostrum, transitional and mature. The study included 89 healthy adult women were enrolled in the control group (n = 51) and supplemented group (n = 38). Blood samples were collected and milk colostrum soon after birth (0h milk) twenty-four hours, new rate of colostrum milk was collected (24h milk). The transitional and mature milk were collected in seven days (7d milk) and thirty days (30d milk) after delivery, respectively. Supplementation in the supplemented group was held after the collection of blood and 0h milk. The alpha-tocopherol analyzes were performed by high-performance liquid chromatography. Serum levels of alpha-tocopherol less than 516 μg/dL were considered indicative of nutritional deficiency. The average concentration of alphatocopherol in the serum of the control group mothers was 1159.8 ± 292.4 μg/dL and the supplemented group was 1128.3 ± 407.2 μg/dL (p = 0.281). All women had nutritional status in vitamin E suitable. In both groups, it was observed that the concentration of vitamin E in colostrum milk was higher compared to transitional and mature milk. In the supplemented group, the concentration of alpha-tocopherol in the milk increased 60 % after supplementation, from 1339.3 ± 414.2 μg/dL (0h milk) to 2234.7 ± 997.3 μg/dL (24h milk). While the control group values in colostrum 0h and colostrum 24h were similar (p = 0.681). In the control group the follow-on milk alphatocopherol value was 875.3 ± 292.4 μg/dL and in the group supplemented 1352.8 ± 542.3 μg/dL, an increase of 35% in the supplemented group compared to control (p <0.001). In mature milk alpha-tocopherol concentrations between the control group (426.6 ± 187.5 μg/dL) and supplemented (416.4 ± 214.2 μg/dL) were similar (p = 0.853). Only 24h milk supplemented group answered the nutritional requirement of alpha-tocopherol (4 mg/day) of the newborn. These results show that the transport of this micronutrient for milk occurs in a controlled and limited way. Thus, the native vitamin E supplementation increases the concentration of alpha-tocopherol in colostrum and milk and transition does not influence the concentration in mature milk. Only the increase in colostrum milk was sufficient to meet the nutritional requirement of premature newborns.
Resumo:
The objective of this study was to assess seasonal variation in nutritional status and feeding practices among lactating mothers and their children 6-23 months of age in two different agro-ecological zones of rural Ethiopia (lowland zone and midland zone). Food availability and access are strongly affected by seasonality in Ethiopia. However, there are few published data on the effects of seasonal food fluctuations on nutritional status and dietary diversity patterns of mothers and children in rural Ethiopia. A longitudinal study was conducted among 216 mothers in two agro-ecological zones of rural Ethiopia during pre and post-harvest seasons. Data were collected on many parameters including anthropometry, blood levels of haemoglobin and ferritin and zinc, urinary iodine levels, questionnaire data regarding demographic and household parameters and health issues, and infant and young child feeding practices, 24 h food recall to determine dietary diversity scores, and household use of iodized salt. Chi-square and multivariable regression models were used to identify independent predictors of nutritional status. A wide variety of results were generated including the following highlights. It was found that 95.4% of children were breastfed, of whom 59.7% were initially breastfed within one hour of birth, 22.2% received pre-lacteal feeds, and 50.9% of children received complementary feedings by 6 months of age. Iron deficiency was found in 44.4% of children and 19.8% of mothers. Low Zinc status was found in 72.2% of children and 67.3% of mothers. Of the study subjects, 52.5% of the children and 19.1% of the mothers were anaemic, and 29.6% of children and 10.5% of mothers had iron deficiency anaemia. Among the mothers with low serum iron status, 81.2% and 56.2% of their children had low serum zinc and iron, respectively. Similarly, among the low serum zinc status mothers, 75.2% and 45.3% of their children had low serum in zinc and iron, respectively. There was a strong correlation between the micronutrient status of the mothers and the children for ferritin, zinc and haemoglobin (P <0.001). There was also statistically significant difference between agro-ecological zones for micronutrient deficiencies among the mothers (p<0.001) but not for their children. The majority (97.6%) of mothers in the lowland zone were deficient in at least one micronutrient biomarker (zinc or ferritin or haemoglobin). Deficiencies in one, two, or all three biomarkers of micronutrient status were observed in 48.1%, 16.7% and 9.9% of mothers and 35.8%, 29.0%, and 23.5%, of children, respectively. Additionally, about 42.6% of mothers had low levels of urinary iodine and 35.2% of lactating mothers had goitre. Total goitre prevalence rates and urinary iodine levels of lactating mothers were not significantly different across agro-ecological zones. Adequately iodised salt was available in 36.6% of households. The prevalence of anaemia increased from post-harvest (21.8%) to pre-harvest seasons (40.9%) among lactating mothers. Increases were from 8.6% to 34.4% in midland and from 34.2% to 46.3% in lowland agro-ecological zones. Fifteen percent of mothers were anaemic during both seasons. Predictors of anaemia were high parity of mother and low dietary diversity. The proportion of stunted and underweight children increased from 39.8% and 27% in post-harvest season to 46.0% and 31.8% in pre-harvest season, respectively. However, wasting in children decreased from 11.6% to 8.5%. Major variations in stunting and underweight were noted in midland compared to lowland agroecological zones. Anthropometric measurements in mothers indicated high levels of undernutrition. The prevalence of undernutrition in mothers (BMI <18.5kg/m2) increased from 41.7 to 54.7% between post- and pre-harvest seasons. The seasonal effect was generally higher in the midland community for all forms of malnutrition. Parity, number of children under five years and regional variation were predictors of low BMI among lactating mothers. There were differences in minimum meal frequency, minimum acceptable diet and dietary diversity in children in pre-harvest and post-harvest seasons and these parameters were poor in both seasons. Dietary diversity among mothers was higher in lowland zone but was poor in both zones across the seasons. In conclusion, malnutrition and micronutrient deficiencies are very prevalent among lactating mothers and their children 6-23 months old in the study areas. There are significant seasonal variations in malnutrition and dietary diversity, in addition to significant differences between lowland and midland agro-ecological zones. These findings suggest a need to design effective preventive public health nutrition programs to address both the mothers’ and children’s needs particularly in the preharvest season.
Resumo:
We have analyzed the stable carbon isotopic composition of the diunsaturated C37 alkenone in 29 surface sediments from the equatorial and South Atlantic Ocean. Our study area covers different oceanographic settings, including sediments from the major upwelling regions off South Africa, the equatorial upwelling, and the oligotrophic western South Atlantic. In order to examine the environmental influences on the sedimentary record the alkenone-based carbon isotopic fractionation (Ep) values were correlated with the overlying surface water concentrations of aqueous CO2 ([CO2(aq)]), phosphate, and nitrate. We found Ep positively correlated with 1/[CO2(aq)] and negatively correlated with [PO43-] and [NO3-]. However, the relationship between Ep and 1/[CO2(aq)] is opposite of what is expected from a [CO2(aq)] controlled, diffusive uptake model. Instead, our findings support the theory of Bidigare et al. (1997, doi:10.1029/96GB03939) that the isotopic fractionation in haptophytes is related to nutrient-limited growth rates. The relatively high variability of the Ep-[PO4] relationship in regions with low surface water nutrient concentrations indicates that here other environmental factors also affect the isotopic signal. These factors might be variations in other growth-limiting resources such as light intensity or micronutrient concentrations.
Resumo:
Hydrothermal vent fluids are highly enriched in iron (Fe) compared to ambient seawater, and organic ligands may play a role in facilitating the transport of some hydrothermal Fe into the open ocean. This is important since Fe is a limiting micronutrient for primary production in large parts of the world's surface ocean. We have investigated the concentration and speciation of Fe in several vent fluid and plume samples from the Nifonea vent field, Coriolis Troughs, New Hebrides Island Arc, South Pacific Ocean using competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-AdCSV) with salicylaldoxime (SA) as the artificial ligand. Our results for total dissolved Fe (dFe) in the buoyant hydrothermal plume samples showed concentrations up to 3.86 µM dFe with only a small fraction between 1.1 and 11.8% being chemically labile. Iron binding ligand concentrations ([L]) were found in µM level with strong conditional stability constants up to logKFeL,Fe3+ of 22.9. Within the non-buoyant hydrothermal plume above the Nifonea vent field, up to 84.7% of the available Fe is chemically labile and [L] concentrations up to 97 nM were measured. [L] was consistently in excess of Felab, indicating that all available Fe is being complexed, which in combination with high Felab values in the non-buoyant plume, signifies that a high fraction of hydrothermal dFe is potentially being transported away from the plume into the surrounding waters, contributing to the global oceanic Fe budget.