312 resultados para microRNA 200b
Resumo:
In chronic myelogenous leukemia (CML), oncogenic BCR-ABL1 activates the Wnt pathway, which is fundamental for leukemia stem cell (LSC) maintenance. Tyrosine kinase inhibitor (TKI) treatment reduces Wnt signaling in LSCs and often results in molecular remission of CML; however, LSCs persist long term despite BCR-ABL1 inhibition, ultimately causing disease relapse. We demonstrate that TKIs induce the expression of the tumor necrosis factor (TNF) family ligand CD70 in LSCs by down-regulating microRNA-29, resulting in reduced CD70 promoter DNA methylation and up-regulation of the transcription factor specificity protein 1. The resulting increase in CD70 triggered CD27 signaling and compensatory Wnt pathway activation. Combining TKIs with CD70 blockade effectively eliminated human CD34(+) CML stem/progenitor cells in xenografts and LSCs in a murine CML model. Therefore, targeting TKI-induced expression of CD70 and compensatory Wnt signaling resulting from the CD70/CD27 interaction is a promising approach to overcoming treatment resistance in CML LSCs.
Resumo:
Endometriosis affects approximately 15% of reproductive aged women and is associated with chronic pelvic pain and infertility. However, the molecular mechanisms by which endometriosis impacts fertility are poorly understood. The developmentally regulated, imprinted H19 long noncoding RNA (lncRNA) functions to reduce the bioavailability of microRNA let-7 by acting as a molecular sponge. Here we report that H19 expression is significantly decreased in the eutopic endometrium of women with endometriosis as compared to normal controls. We show that decreased H19 increases let-7 activity, which in turn inhibits Igf1r expression at the post-transcriptional level, thereby contributing to reduced proliferation of endometrial stromal cells. We propose that perturbation of this newly identified H19/Let-7/IGF1R regulatory pathway may contribute to impaired endometrial preparation and receptivity for pregnancy in women with endometriosis. Our finding represents the first example of a lncRNA-based mechanism in endometriosis and its associated infertility, thus holding potential in the development of novel therapeutics for women with endometriosis and infertility.
Resumo:
Embryonic-maternal interaction from the earliest stages of gestation has a key, sustained role in neurologic development, persisting into adulthood. Early adverse events may be detrimental in adulthood. Protective factors present during gestation could significantly impact post-natal therapy. The role of PreImplantation Factor (PIF) within this context is herein examined. Secreted by viable early embryos, PIF establishes effective embryonic-maternal communication and exerts essential trophic and protective roles by reducing oxidative stress and protein misfolding and by blunting the nocive let-7 microRNA related pathway. PIF's effects on systemic immunity lead to comprehensive immune modulation, not immune suppression. We examine PIF's role in protecting embryos from adverse maternal environment, which can lead to neurological disorders that may only manifest post-nataly: Synthetic PIF successfully translates endogenous PIF features in both pregnant and non-pregnant clinically relevant models. Specifically PIF has neuroprotective effects in neonatal prematurity. In adult relapsing-remitting neuroinflammation, PIF reverses advanced paralysis while promoting neurogenesis. PIF reversed Mycobacterium smegmatis induced brain infection. In graft-vs.-host disease, PIF reduced skin ulceration, liver inflammation and colon ulceration while maintaining beneficial anti-cancer, graft-vs.-leukemia effect. Clinical-grade PIF has high-safety profile even at supraphysiological doses. The FDA awarded Fast-Track designation, and university-sponsored clinical trials for autoimmune disorder are ongoing. Altogether, PIF properties point to its determining regulatory role in immunity, inflammation and transplant acceptance. Specific plans for using PIF for the treatment of complex neurological disorders (ie. traumatic brain injury, progressive paralysis), including neuroprotection from newborn to adult, are presented.
Resumo:
The adaptive response to extreme endurance exercise might involve transcriptional and translational regulation by microRNAs (miRNAs). Therefore, the objective of the present study was to perform an integrated analysis of the blood transcriptome and miRNome (using microarrays) in the horse before and after a 160 km endurance competition. A total of 2,453 differentially expressed genes and 167 differentially expressed microRNAs were identified when comparing pre- and post-ride samples. We used a hypergeometric test and its generalization to gain a better understanding of the biological functions regulated by the differentially expressed microRNA. In particular, 44 differentially expressed microRNAs putatively regulated a total of 351 depleted differentially expressed genes involved variously in glucose metabolism, fatty acid oxidation, mitochondrion biogenesis, and immune response pathways. In an independent validation set of animals, graphical Gaussian models confirmed that miR-21-5p, miR-181b-5p and miR-505-5p are candidate regulatory molecules for the adaptation to endurance exercise in the horse. To the best of our knowledge, the present study is the first to provide a comprehensive, integrated overview of the microRNA-mRNA co-regulation networks that may have a key role in controlling post-transcriptomic regulation during endurance exercise.
Resumo:
Germ cell development is a highly coordinated process driven, in part, by regulatory mechanisms that control gene expression. Not only transcription, but also translation, is under regulatory control to direct proper germ cell development. In this dissertation, I have focused on two regulators of germ cell development. One is the homeobox protein RHOX10, which has the potential to be both a transcriptional and translational regulator in mouse male germ cell development. The other is the RNA-binding protein, Hermes, which functions as a translational regulator in Xenopus laevis female germ cell development. ^ Rhox10 is a member of reproductive homeobox gene X-(linked (Rhox) gene cluster, of which expression is developmentally regulated in developing mouse testes. To identify the cell types and developmental stages in which Rhox10 might function, I characterized its temporal and spatial expression pattern in mouse embryonic, neonatal, and adult tissues. Among other things, this analysis revealed that both the level and the subcellular localization of RHOX10 are regulated during germ cell development. To understand the role of Rhox10 in germ cell development, I generated transgenic mice expressing an artificial microRNA (miRNA) targeting Rhox10. While this artificial miRNA robustly downregulated RHOX10 protein expression in vitro, it did not significantly reduce RHOX10 expression in vivo. So I next elected to knockdown RHOX10 levels in spermatogonial stem cells (SSCs), which I found highly express both Rhox10 mRNA and RHOX10 protein. Using a recently developed in vitro culture system for SSCs combined with a short-hairpin RNA (shRNA) approach, I strongly depleted RHOX10 expression in SSCs. These RHOX10-depleted cells exhibited a defect in the ability to form stem cell clusters in vitro. Expression profiling analysis revealed many genes regulated by Rhox10, including many meiotic genes, which could be downstream of Rhox10 in a molecular pathway that controls SSC differentiation. ^ RNA recognition motif (RRM) containing protein, Hermes is localized in germ plasm, where dormant mRNAs are also located, of Xenopus oocytes, which implicates its role in translational regulator. To understand the function of Hermes in oocyte meiosis, I used a morpholino oligonucleotide (MO) based knockdown approach. Microinjection of Hermes MO into fully grown oocytes, which are arrested in meiotic prophase, caused acceleration of oocytes reentry into meiosis (i.e., maturation) upon progesterone induction. Using a candidate approach, I identified at least three targets of Hermes: Ringo/Spy, Xcat2, and Mos. Ringo/Spy and Mos are known to have functions in oocyte maturation, while Ringo/Spy, Xcat2 mRNA are localized in the germ plasm of oocytes, which drives germ cell specification after fertilization. This led me to propose that Hermes functions in both oocyte maturation and germ cell development through its ability to regulate 3 crucial target mRNAs. ^
Resumo:
It is well accepted that tumorigenesis is a multi-step procedure involving aberrant functioning of genes regulating cell proliferation, differentiation, apoptosis, genome stability, angiogenesis and motility. To obtain a full understanding of tumorigenesis, it is necessary to collect information on all aspects of cell activity. Recent advances in high throughput technologies allow biologists to generate massive amounts of data, more than might have been imagined decades ago. These advances have made it possible to launch comprehensive projects such as (TCGA) and (ICGC) which systematically characterize the molecular fingerprints of cancer cells using gene expression, methylation, copy number, microRNA and SNP microarrays as well as next generation sequencing assays interrogating somatic mutation, insertion, deletion, translocation and structural rearrangements. Given the massive amount of data, a major challenge is to integrate information from multiple sources and formulate testable hypotheses. This thesis focuses on developing methodologies for integrative analyses of genomic assays profiled on the same set of samples. We have developed several novel methods for integrative biomarker identification and cancer classification. We introduce a regression-based approach to identify biomarkers predictive to therapy response or survival by integrating multiple assays including gene expression, methylation and copy number data through penalized regression. To identify key cancer-specific genes accounting for multiple mechanisms of regulation, we have developed the integIRTy software that provides robust and reliable inferences about gene alteration by automatically adjusting for sample heterogeneity as well as technical artifacts using Item Response Theory. To cope with the increasing need for accurate cancer diagnosis and individualized therapy, we have developed a robust and powerful algorithm called SIBER to systematically identify bimodally expressed genes using next generation RNAseq data. We have shown that prediction models built from these bimodal genes have the same accuracy as models built from all genes. Further, prediction models with dichotomized gene expression measurements based on their bimodal shapes still perform well. The effectiveness of outcome prediction using discretized signals paves the road for more accurate and interpretable cancer classification by integrating signals from multiple sources.
Resumo:
Differences in gene expression patterns have been documented not only in Multiple Sclerosis patients versus healthy controls but also in the relapse of the disease. Recently a new gene expression modulator has been identified: the microRNA or miRNA. The aim of this work is to analyze the possible role of miRNAs in multiple sclerosis, focusing on the relapse stage. We have analyzed the expression patterns of 364 miRNAs in PBMC obtained from multiple sclerosis patients in relapse status, in remission status and healthy controls. The expression patterns of the miRNAs with significantly different expression were validated in an independent set of samples. In order to determine the effect of the miRNAs, the expression of some predicted target genes of these were studied by qPCR. Gene interaction networks were constructed in order to obtain a co-expression and multivariate view of the experimental data. The data analysis and later validation reveal that two miRNAs (hsa-miR-18b and hsa-miR-599) may be relevant at the time of relapse and that another miRNA (hsa-miR-96) may be involved in remission. The genes targeted by hsa-miR-96 are involved in immunological pathways as Interleukin signaling and in other pathways as wnt signaling. This work highlights the importance of miRNA expression in the molecular mechanisms implicated in the disease. Moreover, the proposed involvement of these small molecules in multiple sclerosis opens up a new therapeutic approach to explore and highlight some candidate biomarker targets in MS
Resumo:
La diagnosi di neoplasia epiteliale maligna polmonare è legata tradizionalmente alla distinzione tra carcinoma a piccole cellule (small-cell lung cancer, SCLC) e carcinoma non-a piccole cellule del polmone (non-small-cell lung cancer, NSCLC). Nell’ambito del NSCLC attualmente è importante di-stinguere l’esatto istotipo (adenocarcinoma, carcinoma squamocellulare e carcinoma neuroendocrino) perchè l’approccio terapeutico cambia a seconda dell’istotipo del tumore e la chemioterapia si dimostra molto spesso inefficace. Attualmente alcuni nuovi farmaci a bersaglio molecolare per il gene EGFR, come Erlotinib e Gefitinib, sono utilizzati per i pazienti refrattari al trattamento chemioterapico tradizionale, che non hanno risposto a uno o più cicli di chemioterapia o che siano progrediti dopo questa. I test per la rilevazione di specifiche mutazioni nel gene EGFR permettono di utilizzare al meglio questi nuovi farmaci, applicandoli anche nella prima linea di trattamento sui pazienti che hanno una maggiore probabilità di risposta alla terapia. Sfortunatamente, non tutti i pazienti rispondono allo stesso modo quando trattati con farmaci anti-EGFR. Di conseguenza, l'individuazione di biomarcatori predittivi di risposta alla terapia sarebbe di notevole importanza per aumentare l'efficacia dei questi farmaci a target molecolare e trattare con farmaci diversi i pazienti che con elevata probabilità non risponderebbero ad essi. I miRNAs sono piccole molecole di RNA endogene, a singolo filamento di 20-22 nucleotidi che svolgono diverse funzioni, una delle più importanti è la regolazione dell’espressione genica. I miRNAs possono determinare una repressione dell'espressione genica in due modi: 1-legandosi a sequenze target di mRNA, causando così un silenziamento del gene (mancata traduzione in proteina), 2- causando la degradazione dello specifico mRNA. Lo scopo della ricerca era di individuare biomarcatori capaci di identificare precocemente i soggetti in grado di rispondere alla terapia con Erlotinib, aumentando così l'efficacia del farmaco ed evitan-do/riducendo possibili fenomeni di tossicità e il trattamento di pazienti che probabilmente non ri-sponderebbero alla terapia offrendo loro altre opzioni prima possibile. In particolare, il lavoro si è fo-calizzato sul determinare se esistesse una correlazione tra la risposta all'Erlotinib ed i livelli di espressione di miRNAs coinvolti nella via di segnalazione di EGFR in campioni di NSCLC prima dell’inizio della terapia. Sono stati identificati 7 microRNA coinvolti nel pathway di EGFR: miR-7, -21, 128b, 133a, -133b, 146a, 146b. Sono stati analizzati i livelli di espressione dei miRNA mediante Real-Time q-PCR in campioni di NSCLC in una coorte di pazienti con NSCLC metastatico trattati con Erlotinib dal 1° gennaio 2009 al 31 dicembre 2014 in 2°-3° linea dopo fallimento di almeno un ciclo di chemioterapia. I pazienti sottoposti a trattamento con erlotinib per almeno 6 mesi senza presentare progressione alla malattia sono stati definiti “responders” (n=8), gli altri “non-responders” (n=25). I risultati hanno mostrato che miR-7, -133b e -146a potrebbero essere coinvolti nella risposta al trat-tamento con Erlotinib. Le indagini funzionali sono state quindi concentrate su miR-133b, che ha mo-strato la maggiore espressione differenziale tra i due gruppi di pazienti. E 'stata quindi studiata la capacità di miR-133b di regolare l'espressione di EGFR in due linee di cellule del cancro del polmone (A549 e H1299). Sono stati determinati gli effetti di miR-133b sulla crescita cellulare. E’ stato anche analizzato il rapporto tra miR-133b e sensibilità a Erlotinib nelle cellule NSCLC. L'aumento di espressione di miR-133b ha portato ad una down-regolazione del recettore di EGF e del pathway di EGFR relativo alla linea cellulare A549. La linea cellulare H1299 era meno sensibili al miR-133b up-regulation, probabilmente a causa dell'esistenza di possibili meccanismi di resistenza e/o di com-pensazione. La combinazione di miR-133b ed Erlotinib ha aumentato l'efficacia del trattamento solo nella linea cellulare A549. Nel complesso, questi risultati indicano che miR-133b potrebbe aumentare / ripristinare la sensibilità di Erlotinib in una frazione di pazienti.
Resumo:
Gli acidi peptido nucleici sono potenti strumenti utilizzati in ambito biotecnologico per colpire DNA o RNA. PNA contenenti basi o backbone modificati sono attualmente studiati per migliorarne le proprietà in ambito biologico. Bersagliare i micro RNA (anti-miR) è particolarmente interessante nell’ottica di future applicazioni terapeutiche, ma strumenti computazionali che aiutino nel design di nuovi PNA anti-miR non sono stati ancora completamente sviluppati. Le proprietà conformazionali del singolo filamento di PNA (non modificato o recante modificazioni in γ) e dei duplex PNA:RNA e i processi di re-annealing e melting sono stati studiati tramite Dinamica Molecolare e Metadinamica. L’approccio computazionale consolidato, assieme a un programma modificato per la generazione delle strutture dei duplex contenenti PNA, è stato utilizzato per il virtual screening di PNA contenenti basi modificate. Sono state inoltre sintetizzate le unità per l’ottenimento del composto più promettente e una funzione idrolitica da legare al monomero finale.
Resumo:
The primary goal of this thesis was to determine if spaced synaptic stimulation induced the differential expression of microRNAs (miRNAs) in the Drosophila melanogaster central nervous system (CNS). Prior to attaining this goal, we needed to identify and validate a spaced stimulation paradigm that could induce the formation of new synaptic growth at a model synapse, the larval neuromuscular junction (NMJ). Both Channelrhodopsin- and high potassium-based stimulation paradigms adapted from (Ataman, et al. 2008) were tested. Once validation of these paradigms was complete, we sought to characterize the miRNA expression profile of the larval CNS by miRNA array. Following attainment of these data, we used quantitative real-time PCR (RT-qPCR) to determine if acute synaptic stimulation caused the differential expression of neuronal miRNAs. We found that upon high potassium spaced training in a wild type (Canton S) genotype, 5 miRNAs showed significant differential expression when normalized to a validated reference gene, the U1 snRNA. Moreover, absolute quantification of our RT-qPCR study implicated one miRNA: miR-958 as being significantly regulated by activity. Investigation into potential targets for miR-958 revealed it to be a potential regular of Dlar, a protein tyrosine phosphatase implicated in synapse development. This investigation provides the foundation to directly test our underlying hypothesis that, following spaced training, differential expression of miRNAs alters the translation of proteins required to induce and maintain these structural changes at the synapse.
Activity-Regulated microRNAs: Modulators of Synaptic Growth at the Drosophila Neuromuscular Junction
Resumo:
It is well established that long-term changes in synaptic structure and function are mediated by rapid activity-dependent gene transcription and new protein synthesis. A growing body of evidence supports the involvement of the microRNA (miRNA) pathway in these processes. We have used the Drosophila neuromuscular junction (NMJ) as a model synapse to characterize activity-regulated miRNAs and their important mRNA targets. Here, we have identified five neuronal miRNAs (miRs-1, -8, -289, -314, and -958) that are significantly downregulated in response to neuronal activity. Furthermore we have discovered that neuronal misexpression of three of these miRNAs (miR-8, -289, and -958) is capable of suppressing new synaptic growth in response to activity suggesting that these miRNAs control the translation of biologically relevant target mRNAs. Putative targets of the activity-regulated miRNAs-8 and -289 are significantly enriched in clusters mapping to functional processes including axon development, pathfinding, and axon growth. We demonstrate that activity-regulated miR-8 regulates the 3'UTR of wingless, a presynaptic regulatory protein involved in the process of activity-dependent axon terminal growth. Additionally, we show that the 3'UTR of the protein tyrosine phosophatase leukocyte antengen related (lar), a protein required for axon guidance and synaptic growth, is regulated by activity-regulated miRNAs-8, -289, and -958 in vitro. Both wg and lar were identified as relevant putative targets for co-regulation based through our functional cluster analysis. One putative target of miR-289 is the Ca2+/calmodulin-dependent protein kinase II (CamKII). While CamKII is not predicted as a target for co-regulation by multiple activity-regulated miRNAs we identified it as an especially pertinent target for analysis in our system for two reasons. First, CamKII has an extremely well characterized role in postsynaptic plasticity, but its presynaptic role is less well characterized and bears further analysis. Second, local translation of CamKII mRNA is regulated in part by the miRNA pathway in an activity-dependent manner in dendrites. We find that the CamKII 3'UTR is regulated by miR-289 in-vitro and this regulation is alleviated by mutating the `seed region' of the miR-289 binding site within the CamKII 3'UTR. Furthermore, we demonstrate a requirement for local translation of CamKII in motoneurons in the process of activity-regulated axon terminal growth.
Resumo:
Post-transcriptional regulation of mRNA is facilitated by different mechanisms, such as microRNA (miRNA) induced gene silencing or fragile X mental retardation protein (FMRP) mediated repression either independent of or acting through cytoplasmic RNA Processing bodies (P bodies). DPTP99A, Lar, and Wg have known functions during synaptogenesis and may be targets of miR-8. Here, we provide evidence that miR-8 regulates DPTP99A in vitro. Non-endogenous miR-8 expressed using an UAS driver regulates Lar. Endogenous miR-8 may regulate DPTP99A in vivo. Here we show that FMRP is capable of colocalizing with the P body components: DCP1, HPat, and Me31B, but not CCR4. We also show that RNAi against HPat and Me31B but not CCR4 and DCP1 are required for FMRP’s repression of a translational reporter in vivo. This functional analysis provides additional insight into another aspect of FMRP’s and P bodies’ ability to cooperatively control repression of mRNA targets.
Resumo:
Hox genes encode a family of transcriptional regulators that elicit distinct developmental programmes along the head-to-tail axis of animals. The specific regional functions of individual Hox genes largely reflect their restricted expression patterns, the disruption of which can lead to developmental defects and disease. Here, we examine the spectrum of molecular mechanisms controlling Hox gene expression in model vertebrates and invertebrates and find that a diverse range of mechanisms, including nuclear dynamics, RNA processing, microRNA and translational regulation, all concur to control Hox gene outputs. We propose that this complex multi-tiered regulation might contribute to the robustness of Hox expression during development.
Resumo:
Dissertação para obtenção do grau de Mestre no Instituto Superior de Ciências da Saúde Egas Moniz
Resumo:
Fused in sarcoma (FUS) is a ubiquitously expressed RNA-binding protein proposed to function in various RNA metabolic pathways, including transcription regulation, pre-mRNA splicing, RNA transport and microRNA processing. Mutations in the FUS gene were identified in patients with amyotrophic lateral sclerosis (ALS), but the pathomechanisms by which these mutations cause ALS are not known. Here, we show that FUS interacts with the minor spliceosome constituent U11 snRNP, binds preferentially to minor introns and directly regulates their removal. Furthermore, a FUS knockout in neuroblastoma cells strongly disturbs the splicing of minor intron-containing mRNAs, among them mRNAs required for action potential transmission and for functional spinal motor units. Moreover, an ALS-associated FUS mutant that forms cytoplasmic aggregates inhibits splicing of minor introns by trapping U11 and U12 snRNAs in these aggregates. Collectively, our findings suggest a possible pathomechanism for ALS in which mutated FUS inhibits correct splicing of minor introns in mRNAs encoding proteins required for motor neuron survival.