914 resultados para micro-scale gas flow


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a device developed on the pilot scale and a simple approach to compare liquid distributor efficiencies. The technique consists basically of analyzing the mass of the liquid collected in 21 vertical pipes measuring 52 mm in internal diameter and 800 mm in length placed in a quadratic arrangement and positioned below the distributor A 50 mm thick acrylic blanket that does not disperse liquids was placed between the distributor and the pipe bank to avoid splashes. Assays were carried out with ladder-type distributors equipped with 4 parallel pipes each for a column measuring 400 nun in diameter as an example of the application. The number (n) of orifices (95, 127, and 159 orifices/m(2)), orifice diameter (d) (2, 3, and 4 mm) and the flowrate (q) (1.2; 1.4; and 1.6 m(3)/h) were varied. The best spread efficiency, which presented the lowest standard deviation, was achieved with 159 orifices, 2 mm and 1.4 m(3)/h. The pressure (p) at the distributor inlet for this condition was only 51000 Pa (0.51 kgf/cm(2)), while the average velocity (v) was 6.3 m/s in each orifice. These results show some limitations of the practical rules used in distributor designs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Sugarcane cultivation plays an important role in Brazilian economy, and it is expanding fast, mainly due to the increasing demand for ethanol production. In order to understand the impact of sugarcane cultivation and management, we studied sugarcane under different management regimes (pre-harvest burn and mechanical, unburnt harvest, or green cane), next to a control treatment with native vegetation. The soil bacterial community structure (including an evaluation of the diversity of the ammonia oxidizing (amoA) and denitrifying (nirK) genes), greenhouse gas flow and several soil physicochemical properties were evaluated. Results: Our results indicate that sugarcane cultivation in this region resulted in changes in several soil properties. Moreover, such changes are reflected in the soil microbiota. No significant influence of soil management on greenhouse gas fluxes was found. However, we did find a relationship between the biological changes and the dynamics of soil nutrients. In particular, the burnt cane and green cane treatments had distinct modifications. There were significant differences in the structure of the total bacterial, the ammonia oxidizing and the denitrifying bacterial communities, being that these groups responded differently to the changes in the soil. A combination of physical and chemical factors was correlated to the changes in the structures of the total bacterial communities of the soil. The changes in the structures of the functional groups follow a different pattern than the physicochemical variables. The latter might indicate a strong influence of interactions among different bacterial groups in the N cycle, emphasizing the importance of biological factors in the structuring of these communities. Conclusion: Sugarcane land use significantly impacted the structure of total selected soil bacterial communities and ammonia oxidizing and denitrifier gene diversities in a Cerrado field site in Central Brazil. A high impact of land use was observed in soil under the common burnt cane management. The green cane soil also presented different profiles compared to the control soil, but to at a lesser degree.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small scale fluid flow systems have been studied for various applications, such as chemical reagent dosages and cooling devices of compact electronic components. This work proposes to present the complete cycle development of an optimized heat sink designed by using Topology Optimization Method (TOM) for best performance, including minimization of pressure drop in fluid flow and maximization of heat dissipation effects, aiming small scale applications. The TOM is applied to a domain, to obtain an optimized channel topology, according to a given multi-objective function that combines pressure drop minimization and heat transfer maximization. Stokes flow hypothesis is adopted. Moreover, both conduction and forced convection effects are included in the steady-state heat transfer model. The topology optimization procedure combines the Finite Element Method (to carry out the physical analysis) with Sequential Linear Programming (as the optimization algorithm). Two-dimensional topology optimization results of channel layouts obtained for a heat sink design are presented as example to illustrate the design methodology. 3D computational simulations and prototype manufacturing have been carried out to validate the proposed design methodology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rationale: Coralligenous habitat is considered the second most important subtidal “hot spot” of species diversity in the Mediterranean Sea after the Posidonia oceanica meadows. It can be defined as a typical Mediterranean biogenic hard bottom, mainly produced by the accumulation of calcareous encrusting algae that, together with other builder organisms, form a multidimensional framework with a high micro-spatial variability. The development of this habitat depends on physical factors (i.e. light, hydrodynamism, nutrients, etc.), but also biologic interactions can play a relevant role in structuring the benthic assemblages. This great environmental heterogeneity allows several different assemblages to coexist in a reduced space. One of the most beautiful is that characterised by the Mediterranean gorgonian Paramuricea clavata (Risso, 1826) that can contribute to above 40% of total biomass of the community and brings significant structural complexity into the coralligenous habitat. In sites moderately exposed to waves and currents, P. clavata can form high-density populations (up to 60 colonies m-2) between 20 – 70 m in depth. Being a suspension feeder, where it forms dense populations, P. clavata plays a significant role in transferring energy from planktonic to benthic system. The effects of the branched colonies of P. clavata could be comparable to those of the forests on land. They can affect the micro scale hydrodynamism and light, promoting or inhibiting the growth of other species. Unfortunately, gorgonians are threatened by several anthropogenic disturbance factors (i.e. fishing, pollution, tourism) and by climatic anomalies, linked to the global changes, that are responsible of thermal stress, development of mucilage and enhanced pathogens activity, leading to mass mortality events in last decades. Till now, the possible effects of gorgonian forest loss are largely unknown. Our goal was to analyse the ecological role of these sea fan forests on the coralligenous benthic assemblages. Experimental setup and main results: The influence of P. clavata in the settlement and recruitment of epibenthic organisms was analysed by a field experiment carried out in two randomly selected places: Tavolara island and Portofino promontory. The experiment consisted in recreate the presence and absence of the gorgonian forest on recruitment panels, arranged in four plots per type (forested and non-forested), interspersed each other, and deployed at the same depth. On every forested panel 3 gorgonian colonies about 20 cm height were grafted with the use of Eppendorf tubes and epoxy resin bicomponent simulating a density of 190 sea fans per m-2. This density corresponds to a mean biomass of 825 g DW m-2,3 which is of the same order of magnitude of the natural high-density populations. After about 4 months, the panels were collected and analysed in laboratory in order to estimate the percent cover of all the species that have colonized the substrata. The gorgonian forest effects were tested by multivariate and univariate permutational analyses of the variance (PERMANOVA). Recruited assemblages largely differed between the two study sites, probably due to different environmental conditions including water quality and turbidity. On overall, the presence of P. clavata reduced the settlement and recruitment of several algae: the shadow caused by the gorgonian might reduce light availability and therefore their growth. This effect might be greater in places where the waters are on average more clear, since at Portofino it is less visible and could be masked by the high turbidity of the water. The same pattern was registered for forams, more abundant outside gorgonian forest, probably linked with algal distribution, shadowing effect or alimentary competition. The last one hypothesis could be valid also for serpulids polychaetes that growth mainly on non-forested panels. An opposite trend, was showed by a species of bryozoan and by an hydroid that is facilitated by the presence of P. clavata, probably because it attenuates irradiance level and hydrodynamism. Species diversity was significantly reduced by the presence of P. clavata forests at both sites. This seems in contrast with what we expected, but the result may be influenced by the large algal component on non-forested panels. The analysis confirmed the presence of differences in the species diversity among plots and between sites respectively due to natural high variability of the coralligenous system and to different local environment conditions. The reduction of species diversity due to the presence of gorgonians appeared related to a worst evenness rather than to less species richness. With our experiment it is demonstrated that the presence of P. clavata forests can significantly alter local coralligenous assemblages patterns, promoting or inhibiting the recruitment of some species, modifying trophic relationships and adding heterogeneity and complexity to the habitat. Moreover, P. clavata could have a stabilising effect on the coralligenous assemblages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Székesfehérvár Ruin Garden is a unique assemblage of monuments belonging to the cultural heritage of Hungary due to its important role in the Middle Ages as the coronation and burial church of the Kings of the Hungarian Christian Kingdom. It has been nominated for “National Monument” and as a consequence, its protection in the present and future is required. Moreover, it was reconstructed and expanded several times throughout Hungarian history. By a quick overview of the current state of the monument, the presence of several lithotypes can be found among the remained building and decorative stones. Therefore, the research related to the materials is crucial not only for the conservation of that specific monument but also for other historic structures in Central Europe. The current research is divided in three main parts: i) description of lithologies and their provenance, ii) physical properties testing of historic material and iii) durability tests of analogous stones obtained from active quarries. The survey of the National Monument of Székesfehérvár, focuses on the historical importance and the architecture of the monument, the different construction periods, the identification of the different building stones and their distribution in the remaining parts of the monument and it also included provenance analyses. The second one was the in situ and laboratory testing of physical properties of historic material. As a final phase samples were taken from local quarries with similar physical and mineralogical characteristics to the ones used in the monument. The three studied lithologies are: fine oolitic limestone, a coarse oolitic limestone and a red compact limestone. These stones were used for rock mechanical and durability tests under laboratory conditions. The following techniques were used: a) in-situ: Schmidt Hammer Values, moisture content measurements, DRMS, mapping (construction ages, lithotypes, weathering forms) b) laboratory: petrographic analysis, XRD, determination of real density by means of helium pycnometer and bulk density by means of mercury pycnometer, pore size distribution by mercury intrusion porosimetry and by nitrogen adsorption, water absorption, determination of open porosity, DRMS, frost resistance, ultrasonic pulse velocity test, uniaxial compressive strength test and dynamic modulus of elasticity. The results show that initial uniaxial compressive strength is not necessarily a clear indicator of the stone durability. Bedding and other lithological heterogeneities can influence the strength and durability of individual specimens. In addition, long-term behaviour is influenced by exposure conditions, fabric and, especially, the pore size distribution of each sample. Therefore, a statistic evaluation of the results is highly recommended and they should be evaluated in combination with other investigations on internal structure and micro-scale heterogeneities of the material, such as petrographic observation, ultrasound pulse velocity and porosimetry. Laboratory tests used to estimate the durability of natural stone may give a good guidance to its short-term performance but they should not be taken as an ultimate indication of the long-term behaviour of the stone. The interdisciplinary study of the results confirms that stones in the monument show deterioration in terms of mineralogy, fabric and physical properties in comparison with quarried stones. Moreover stone-testing proves compatibility between quarried and historical stones. Good correlation is observed between the non-destructive-techniques and laboratory tests results which allow us to minimize sampling and assessing the condition of the materials. Concluding, this research can contribute to the diagnostic knowledge for further studies that are needed in order to evaluate the effect of recent and future protective measures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research work was aimed at studying, with a deterministic approach, the relationships between the rock’s texture and its mechanical properties determined at the laboratory scale. The experimentation was performed on a monomineralic crystalline rock, varying in texture, i.e. grains shape. Multi-scale analysis has been adopted to determine the elasto-mechanical properties of the crystals composing the rock and its strength and deformability at the macro-scale. This let us to understand how the structural variability of the investigated rock affects its macromechanical behaviour. Investigations have been performed on three different scales: nano-scale (order of nm), micro-scale (tens of m) and macro-scale (cm). Innovative techniques for rock mechanics, i.e. Depth Sensing Indentation (DSI), have been applied, in order to determine the elasto-mechanical properties of the calcite grains. These techniques have also allowed to study the influence of grain boundaries on the mechanical response of calcite grains by varying the indents’ sizes and to quantify the effect of the applied load on the hardness and elastic modulus of the grain (indentation size effect, ISE). The secondary effects of static indentation Berkovich, Vickers and Knoop were analyzed by SEM, and some considerations on the rock’s brittle behaviour and the effect of microcracks can be made.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die diffusionsgewichtete Magnetresonanztomographie (MRT) mit dem hyperpolarisierten Edelgas-Isotop 3He ist ein neues Verfahren zur Untersuchung von Erkrankungen der Atem-wege und der Lunge. Die Diffusionsbewegung der 3He-Atome in den Luftwegen der Lunge wird durch deren Wände begrenzt, wobei diese Einschränkung sowohl von den Dimensionen der Atemwege als auch von den Messparametern abhängt. Man misst daher einen scheinbaren Diffusionskoeffizienten (Apparent Diffusion Coefficient, ADC) der kleiner ist als der Diffusionskoeffizient bei freier Diffusion. Der ADC gestattet somit eine qualitative Abschät-zung der Größe der Luftwege und deren krankhafte Veränderung, ohne eine direkte Abbil-dung der Luftwege selbst. Eine dreidimensionale Abbildung der räumlichen Verteilung von Lungenschädigungen wird dadurch möglich. Ziel der vorliegenden Arbeit war es, ein tieferes physikalisch fundiertes Verständnis der 3He-Diffusionsmessung zu ermöglichen und die Methode der diffusionsgewichteten 3He-MRT hin zur Erfassung des kompletten 3He-Diffusionstensors weiterzuentwickeln. Dazu wurde systematisch im Rahmen von Phantom- und tierexperimentellen Studien sowie Patientenmes-sungen untersucht, inwieweit unterschiedliche Einflussfaktoren das Ergebnis der ADC-Messung beeinflussen. So konnte beispielsweise nachgewiesen werden, dass residuale Luftströmungen am Ende der Einatmung keinen Einfluss auf den ADC-Wert haben. Durch Simulationsrechnungen konnte gezeigt werden, in welchem Maße sich die durch den Anregungspuls hervorgerufene Abnah-me der Polarisation des 3He-Gases auf den gemessenen ADC-Wert auswirkt. In einer Studie an lungengesunden Probanden und Patienten konnte die Wiederholbarkeit der ADC-Messung untersucht werden, aber auch der Einfluss von Gravitationseffekten. Diese Ergebnisse ermöglichen genauere Angaben über systematische und statistische Messfehler, sowie über Grenzwerte zwischen normalem und krankhaft verändertem Lungengewebe. Im Rahmen dieser Arbeit wurde die bestehende diffusionsgewichtete Bildgebung methodisch zur Erfassung des kompletten Diffusionstensors von 3He in der Lunge weiterentwickelt. Dies war wichtig, da entlang der Luftwege weitestgehend freie Diffusion vorherrscht, während senkrecht zu den Luftwegen die Diffusion eingeschränkt ist. Mit Hilfe von Simulationsrech-nungen wurde der kritische Einfluss von Rauschen in den MRT-Bildern auf die Qualität der Messergebnisse untersucht. Diese neue Methodik wurde zunächst an einem Phantom beste-hend aus einem Bündel aus Glaskapillaren, deren innerer Durchmesser mit dem des mensch-lichen Azinus übereinstimmt, validiert. Es ergab sich eine gute Übereinstimmung zwischen theoretischen Berechnungen und experimentellen Ergebnissen. In ersten Messungen am Menschen konnten so unterschiedliche Anisotropiewerte zwischen lungengesunden Proban-den und Patienten gefunden werden. Es zeigte sich eine Tendenz zu isotroper Diffusion bei Patienten mit einem Lungenemphysem. Zusammenfassend tragen die Ergebnisse der vorliegenden Arbeit zu einem besseren Ver-ständnis der ADC-Messmethode bei und helfen zukünftige Studien aufgrund des tieferen Verständnisses der die 3He Messung beeinflussenden Faktoren besser zu planen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The demand for novel renewable energy sources, together with the new findings on bacterial electron transport mechanisms and the progress in microbial fuel cell design, have raised a noticeable interest in microbial power generation. Microbial fuel cell (MFC) is an electrochemical device that converts organic substrates into electricity via catalytic conversion by microorganism. It has represented a continuously growing research field during the past few years. The great advantage of this device is the direct conversion of the substrate into electricity and in the future, MFC may be linked to municipal waste streams or sources of agricultural and animal waste, providing a sustainable system for waste treatment and energy production. However, these novel green technologies have not yet been used for practical applications due to their low power outputs and challenges associated with scale-up, so in-depth studies are highly necessary to significantly improve and optimize the device working conditions. For the time being, the micro-scale MFCs show great potential in the rapid screening of electrochemically active microbes. This thesis presents how it will be possible to optimize the properties and design of the micro-size microbial fuel cell for maximum efficiency by understanding the MFC system. So it will involve designing, building and testing a miniature microbial fuel cell using a new species of microorganisms that promises high efficiency and long lifetime. The new device offer unique advantages of fast start-up, high sensitivity and superior microfluidic control over the measured microenvironment, which makes them good candidates for rapid screening of electrode materials, bacterial strains and growth media. It will be made in the Centre of Hybrid Biodevices (Faculty of Physical Sciences and Engineering, University of Southampton) from polymer materials like PDMS. The eventual aim is to develop a system with the optimum combination of microorganism, ion exchange membrane and growth medium. After fabricating the cell, different bacteria and plankton species will be grown in the device and the microbial fuel cell characterized for open circuit voltage and power. It will also use photo-sensitive organisms and characterize the power produced by the device in response to optical illumination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Performing experiments with transactinide elements demands highly sensitive detection methods due to the extremely low production rates (one-atom-at-a-time conditions). Preseparation with a physical recoil separator is a powerful method to significantly reduce the background in experiments with sufficiently long-lived isotopes (t1/2≥0.5 s). In the last years, the new gas-filled TransActinide Separator and Chemistry Apparatus (TASCA) was installed and successfully commissioned at GSI. Here, we report on the design and performance of a Recoil Transfer Chamber (RTC) for TASCA—an interface to connect various chemistry and counting setups with the separator. Nuclear reaction products recoiling out of the target are separated according to their magnetic rigidity within TASCA, and the wanted products are guided to the focal plane of TASCA. In the focal plane, they pass a thin Mylar window that separates the ∼1 mbar atmosphere in TASCA from the RTC kept at ∼1 bar. The ions are stopped in the RTC and transported by a continuous gas flow from the RTC to the ancillary setup. In this paper, we report on measurements of the transportation yields under various conditions and on the first chemistry experiments at TASCA—an electrochemistry experiment with osmium and an ion exchange experiment with the transactinide element rutherfordium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The Anesthetic Conserving Device (AnaConDa) uncouples delivery of a volatile anesthetic (VA) from fresh gas flow (FGF) using a continuous infusion of liquid volatile into a modified heat-moisture exchanger capable of adsorbing VA during expiration and releasing adsorbed VA during inspiration. It combines the simplicity and responsiveness of high FGF with low agent expenditures. We performed in vitro characterization of the device before developing a population pharmacokinetic model for sevoflurane administration with the AnaConDa, and retrospectively testing its performance (internal validation). MATERIALS AND METHODS: Eighteen females and 20 males, aged 31-87, BMI 20-38, were included. The end-tidal concentrations were varied and recorded together with the VA infusion rates into the device, ventilation and demographic data. The concentration-time course of sevoflurane was described using linear differential equations, and the most suitable structural model and typical parameter values were identified. The individual pharmacokinetic parameters were obtained and tested for covariate relationships. Prediction errors were calculated. RESULTS: In vitro studies assessed the contribution of the device to the pharmacokinetic model. In vivo, the sevoflurane concentration-time courses on the patient side of the AnaConDa were adequately described with a two-compartment model. The population median absolute prediction error was 27% (interquartile range 13-45%). CONCLUSION: The predictive performance of the two-compartment model was similar to that of models accepted for TCI administration of intravenous anesthetics, supporting open-loop administration of sevoflurane with the AnaConDa. Further studies will focus on prospective testing and external validation of the model implemented in a target-controlled infusion device.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There has been a continuous evolutionary process in asphalt pavement design. In the beginning it was crude and based on past experience. Through research, empirical methods were developed based on materials response to specific loading at the AASHO Road Test. Today, pavement design has progressed to a mechanistic-empirical method. This methodology takes into account the mechanical properties of the individual layers and uses empirical relationships to relate them to performance. The mechanical tests that are used as part of this methodology include dynamic modulus and flow number, which have been shown to correlate with field pavement performance. This thesis was based on a portion of a research project being conducted at Michigan Technological University (MTU) for the Wisconsin Department of Transportation (WisDOT). The global scope of this project dealt with the development of a library of values as they pertain to the mechanical properties of the asphalt pavement mixtures paved in Wisconsin. Additionally, a comparison with the current associated pavement design to that of the new AASHTO Design Guide was conducted. This thesis describes the development of the current pavement design methodology as well as the associated tests as part of a literature review. This report also details the materials that were sampled from field operations around the state of Wisconsin and their testing preparation and procedures. Testing was conducted on available round robin and three Wisconsin mixtures and the main results of the research were: The test history of the Superpave SPT (fatigue and permanent deformation dynamic modulus) does not affect the mean response for both dynamic modulus and flow number, but does increase the variability in the test results of the flow number. The method of specimen preparation, compacting to test geometry versus sawing/coring to test geometry, does not statistically appear to affect the intermediate and high temperature dynamic modulus and flow number test results. The 2002 AASHTO Design Guide simulations support the findings of the statistical analyses that the method of specimen preparation did not impact the performance of the HMA as a structural layer as predicted by the Design Guide software. The methodologies for determining the temperature-viscosity relationship as stipulated by Witczak are sensitive to the viscosity test temperatures employed. The increase in asphalt binder content by 0.3% was found to actually increase the dynamic modulus at the intermediate and high test temperature as well as flow number. This result was based the testing that was conducted and was contradictory to previous research and the hypothesis that was put forth for this thesis. This result should be used with caution and requires further review. Based on the limited results presented herein, the asphalt binder grade appears to have a greater impact on performance in the Superpave SPT than aggregate angularity. Dynamic modulus and flow number was shown to increase with traffic level (requiring an increase in aggregate angularity) and with a decrease in air voids and confirm the hypotheses regarding these two factors. Accumulated micro-strain at flow number as opposed to the use of flow number appeared to be a promising measure for comparing the quality of specimens within a specific mixture. At the current time the Design Guide and its associate software needs to be further improved prior to implementation by owner/agencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A direct electron transfer process between bacterial cells of electrogenic species Geobacter sulfurreducens (Gs) and electrified electrode surfaces was studied to exploit the reactivity of Gs submonolayers on gold and silver surfaces. A submonolayer of Gs was prepared and studied to explore specifically the heterogeneous electron transfer properties at the bacteria/electrode interface. In situ microscopic techniques characterised the morphology of the Gs submonolayers under the operating conditions. In addition, complementary in situ spectroscopic techniques that allowed us to access in situ molecular information of the Gs with high surface selectivity and sensitivity were employed. The results provided clear evidence that the outermost cytochrome C in Gs is responsible for the heterogeneous electron transfer, which is in direct contact with the metal electrode. Feasibility of single cell in situ studies under operating conditions was demonstrated where the combination of surface-electrochemical tools at the nano- and micro-scale with microbiological approaches can offer unique opportunities for the emerging field of electro-microbiology to explore processes and interactions between microorganisms and electrical devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sublimation, the direct transition from solid to gas phase, is a process responsible for shaping and changing the reflectance properties of many Solar System surfaces. In this study, we have characterized the evolution of the structure/texture and of the visible and near-infrared (VIS–NIR) spectral reflectance of surfaces made of water ice mixed with analogues of complex extraterrestrial organic matter, named tholins, under low temperature (<-70° C) and pressure (10-⁵mbar) conditions. The experiments were carried out in the SCITEAS simulation setup recently built as part of the Laboratory for Outflow Studies of Sublimating Materials (LOSSy) at the University of Bern (Pommerol, A. et al. [2015a]. Planet. Space Sci. 109–110, 106–122). As the water ice sublimated, we observed in situ the formation of a sublimation lag deposit made of a water-free porous (>90% porosity) network of organic filaments on top of the ice. The temporal evolution of the tholins and water ice spectral features (reflectance at the absorption bands wavelengths, red slope, from 0.40 to 1.90lm) are analyzed throughout the sublimation of the samples. We studied how different mixtures of tholins with water (0.1 wt.% tholins as coating or inclusions within the water particles), and different ice particle sizes (4.5 ± 2.5 or 67 ± 31lm) influence the morphological and spectral evolutions of the samples. The sublimation of the ice below the mantle produces a gas flow responsible for the ejection of mm to cm-sized fragments of the deposit in outbursts-like events. The results show remarkable differences between these samples in term of mantle structure, speed of mantle building, rates and surface area of mantle ejections. These data provide useful references for interpreting remote-sensing observations of icy Solar System surfaces, in particular the activity of comet nuclei where sublimation of organic-rich ices and deposition of organic-dust particles likely play a major role. Consequently, the data presented here could be of high interest for the interpretation of Rosetta, and also New Horizons, observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The surfaces of many objects in the Solar System comprise substantial quantities of water ice sometimes mixed with minerals and/or organic molecules. The sublimation of the ice changes the structural and optical properties of these objects. We present laboratory data on the evolution of the structure and the visible and near-infrared spectral reflectance of icy surface analogues of cometary ices, made of water ice, complex organic matter (tholins) and silicates, as they undergo sublimation under low temperature (<-70°C) and pressure (10-⁵mbar) conditions inside the SCITEAS simulation chamber. As the water ice sublimated, we observed in situ the formation of a porous sublimation lag deposit, or sublimation mantle, at the top of the ice. This mantle is a network of filaments made of the non-volatile particles. Organics or phyllosilicates grains, able to interact via stronger inter-particulate forces than olivine grains, can form a foam-like structure having internal cohesiveness, holding olivine grains together. As this mantle builds-up, the band depths of the sub-surface water ice are attenuated until complete extinction under only few millimeters of mantle. Optically thick sublimation mantles are mainly featureless in the near infrared. The absorption bands of the minerals present in the mantle are weak, or even totally absent if minerals are mixed with organics which largely dominate the VIS–NIR reflectance spectrum. During sublimation, ejections of large fragments of mantle, triggered by the gas flow, expose ice particles to the surface. The contrast of brightness between mantled and ice-exposed areas depends on the wavelength range and the dust/ice ratio considered. We describe how the chemical nature of the non-volatiles, the size of their particles, the way they are mixed with the ice and the dust/ice mass ratio influence the texture, activity and spectro-photometric properties of the sublimation mantles. These data provide useful references for interpreting remote-sensing observations of comets and also icy satellites or trans-neptunian objects.