875 resultados para measurement of power loss
Resumo:
Photon migration in a turbid medium has been modeled in many different ways. The motivation for such modeling is based on technology that can be used to probe potentially diagnostic optical properties of biological tissue. Surprisingly, one of the more effective models is also one of the simplest. It is based on statistical properties of a nearest-neighbor lattice random walk. Here we develop a theory allowing one to calculate the number of visits by a photon to a given depth, if it is eventually detected at an absorbing surface. This mimics cw measurements made on biological tissue and is directed towards characterizing the depth reached by photons injected at the surface. Our development of the theory uses formalism based on the theory of a continuous-time random walk (CTRW). Formally exact results are given in the Fourier-Laplace domain, which, in turn, are used to generate approximations for parameters of physical interest.
Resumo:
The assessment of spatial uncertainty in the prediction of nutrient losses by erosion associated with landscape models is an important tool for soil conservation planning. The purpose of this study was to evaluate the spatial and local uncertainty in predicting depletion rates of soil nutrients (P, K, Ca, and Mg) by soil erosion from green and burnt sugarcane harvesting scenarios, using sequential Gaussian simulation (SGS). A regular grid with equidistant intervals of 50 m (626 points) was established in the 200-ha study area, in Tabapuã, São Paulo, Brazil. The rate of soil depletion (SD) was calculated from the relation between the nutrient concentration in the sediments and the chemical properties in the original soil for all grid points. The data were subjected to descriptive statistical and geostatistical analysis. The mean SD rate for all nutrients was higher in the slash-and-burn than the green cane harvest scenario (Student’s t-test, p<0.05). In both scenarios, nutrient loss followed the order: Ca>Mg>K>P. The SD rate was highest in areas with greater slope. Lower uncertainties were associated to the areas with higher SD and steeper slopes. Spatial uncertainties were highest for areas of transition between concave and convex landforms.
Resumo:
Estrone is a powerful growth-inducing hormone that is present in milk, mainly in the form of fatty acid esters, at concentrations that promote growth in experimental animals. We present here a method useful for the measurement of this natural hormone in foods and applied it to several common dairy products. Samples were frozen, finely powdered, and lyophilized then extracted with trichloromethane/methanol; the dry extract was saponified with potassium hydroxide. The free estrone evolved was extracted with ethyl acetate and was used for the estimation of total estrone content through radioimmunoassay. Application of the method to dairy products showed high relative levels of total estrone (essentially acyl-estrone) in milk, in the range of 1 ¿M, which were halved in skimmed milk. Free estrone levels were much lower, in the nanomolar range. A large proportion of estrone esters was present in all other dairy products, fairly correlated with their fat content. The amount of estrone carried by milk is well within the range, where its intake may exert a physiological response in the sucklings for which it is provided. These growth-inducing and energy expenditure-lowering effects may affect humans ingesting significant amounts of dairy products.
Resumo:
The centrifugal liquid membrane (CLM) cell has been utilized for chiroptical studies of liquid-liquid interfaces with a conventional circular dichroism (CD) spectropolarimeter. These studies required the characterization of optical properties of the rotating cylindrical CLM glass cell, which was used under the high speed rotation. In the present study, we have measured the circular and linear dichroism (CD and LD) spectra and the circular and linear birefringence (CB and LB) spectra of the CLM cell itself as well as those of porphyrine aggregates formed at the liquid-liquid interface in the CLM cell, applying Mueller matrix measurement method. From the results, it was confirmed that the CLM-CD spectra of the interfacial porphyrin aggregates observed by a conventional CD spectropolarimeter should be correct irrespective of LD and LB signals in the CLM cell.
Resumo:
Genetically constructed microbial biosensors for measuring organic pollutants are mostly applied in aqueous samples. Unfortunately, the detection limit of most biosensors is insufficient to detect pollutants at low but environmentally relevant concentrations. However, organic pollutants with low levels of water solubility often have significant gas-water partitioning coefficients, which in principle makes it possible to measure such compounds in the gas rather than the aqueous phase. Here we describe the first use of a microbial biosensor for measuring organic pollutants directly in the gas phase. For this purpose, we reconstructed a bioluminescent Pseudomonas putida naphthalene biosensor strain to carry the NAH7 plasmid and a chromosomally inserted gene fusion between the sal promoter and the luxAB genes. Specific calibration studies were performed with suspended and filter-immobilized biosensor cells, in aqueous solution and in the gas phase. Gas phase measurements with filter-immobilized biosensor cells in closed flasks, with a naphthalene-contaminated aqueous phase, showed that the biosensor cells can measure naphthalene effectively. The biosensor cells on the filter responded with increasing light output proportional to the naphthalene concentration added to the water phase, even though only a small proportion of the naphthalene was present in the gas phase. In fact, the biosensor cells could concentrate a larger proportion of naphthalene through the gas phase than in the aqueous suspension, probably due to faster transport of naphthalene to the cells in the gas phase. This led to a 10-fold lower detectable aqueous naphthalene concentration (50 nM instead of 0.5 micro M). Thus, the use of bacterial biosensors for measuring organic pollutants in the gas phase is a valid method for increasing the sensitivity of these valuable biological devices.
Resumo:
BACKGROUND: The renal enzyme renin cleaves from the hepatic alpha(2)-globulin angiotensinogen angiotensin-(1-10) decapeptide [Ang-(1-10)], which is further metabolized to smaller peptides that help maintain cardiovascular homeostasis. The Ang-(1-7) heptapeptide has been reported to have several physiological effects, including natriuresis, diuresis, vasodilation, and release of vasopressin and prostaglandins. METHODS: To investigate Ang-(1-7) in clinical settings, we developed a method to measure immunoreactive (ir-) Ang-(1-7) in 2 mL of human blood and to estimate plasma concentrations by correcting for the hematocrit. A sensitive and specific antiserum against Ang-(1-7) was raised in a rabbit. Human blood was collected in the presence of an inhibitor mixture including a renin inhibitor to prevent peptide generation in vitro. Ang-(1-7) was extracted into ethanol and purified on phenylsilylsilica. The peptide was quantified by radioimmunoassay. Increasing doses of Ang-(1-7) were infused into volunteers, and plasma concentrations of the peptide were measured. RESULTS: The detection limit for plasma ir-Ang-(1-7) was 1 pmol/L. CVs for high and low blood concentrations were 4% and 20%, respectively, and between-assay CVs were 8% and 13%, respectively. Reference values for human plasma concentrations of ir-Ang-(1-7) were 1.0-9.5 pmol/L (median, 4.7 pmol/L) and increased linearly during infusion of increasing doses of Ang-(1-7). CONCLUSIONS: Reliable measurement of plasma ir-Ang-(1-7) is achieved with efficient inhibition of enzymes that generate or metabolize Ang-(1-7) after blood sampling, extraction in ethanol, and purification on phenylsilylsilica, and by use of a specific antiserum.
Resumo:
There is an increased interest in constructing Pre-Cast (PC) Twin and Triple Reinforced Concrete Box (RCB) culverts in Iowa due to the efficiency associated with their production in controlled environment and decrease of the construction time at the culvert sites. The design of the multi-barrel PC culverts is, however, based on guidelines for single-barrel cast-inplace (CIP) culverts despite that the PC and CIP culverts have different geometry. There is scarce information for multiplebarrel RCB culverts in general and even fewer on culverts with straight wingwalls as those designed by Iowa DOT. Overall, the transition from CIP to PC culverts requires additional information for improving the design specifications currently in use. Motivated by the need to fill these gaps, an experimental study was undertaken by IIHR-Hydroscience & Engineering. The goals of the study are to document flow performance curves and head losses at the culvert entrance for a various culvert geometry, flow conditions, and settings. The tests included single-, double- and triple-barrel PC and CIP culverts with two span-to-rise ratios set on mild and steep slopes. The tests also included optimization of the culvert geometry entrance by considering various configurations for the top bevel. The overall conclusion of the study is that by and large the current Iowa DOT design specifications for CIP culverts can be used for multi-barrel PC culvert design. For unsubmerged flow conditions the difference in the hydraulic performance curves and headloss coefficients for PC and CIP culverts are within the experimental uncertainty. Larger differences (specified by the study) are found for submerged conditions when the flow is increasingly constricted at the entrance in the culvert. The observed differentiation is less important for multi-barrel culverts as the influence of the wingwalls decreases with the increase of the number of barrels.
Resumo:
BACKGROUND: Positional therapy that prevents patients from sleeping supine has been used for many years to manage positional obstructive sleep apnea (OSA). However, patients' usage at home and the long term efficacy of this therapy have never been objectively assessed. METHODS: Sixteen patients with positional OSA who refused or could not tolerate continuous positive airway pressure (CPAP) were enrolled after a test night study (T0) to test the efficacy of the positional therapy device. The patients who had a successful test night were instructed to use the device every night for three months. Nightly usage was monitored by an actigraphic recorder placed inside the positional device. A follow-up night study (T3) was performed after three months of positional therapy. RESULTS: Patients used the device on average 73.7 ± 29.3% (mean ± SD) of the nights for 8.0 ± 2.0 h/night. 10/16 patients used the device more than 80% of the nights. Compared to the baseline (diagnostic) night, mean apnea-hypopnea index (AHI) decreased from 26.7 ± 17.5 to 6.0 ± 3.4 with the positional device (p<0.0001) during T0 night. Oxygen desaturation (3%) index also fell from 18.4 ± 11.1 to 7.1 ± 5.7 (p = 0.001). Time spent supine fell from 42.8 ± 26.2% to 5.8 ± 7.2% (p < 0.0001). At three months (T3), the benefits persisted with no difference in AHI (p = 0.58) or in time spent supine (p = 0.98) compared to T0 night. The Epworth sleepiness scale showed a significant decrease from 9.4 ± 4.5 to 6.6 ± 4.7 (p = 0.02) after three months. CONCLUSIONS: Selected patients with positional OSA can be effectively treated by a positional therapy with an objective compliance of 73.7% of the nights and a persistent efficacy after three months.
Resumo:
AIMS/HYPOTHESIS: Intramyocellular lipids, including diacylglycerol (DAG) and ceramides, have been linked to insulin resistance. This randomised repeated-measures study examined the effects of diet-induced weight loss (DIWL) and aerobic exercise (EX) on insulin sensitivity and intramyocellular triacylglycerol (IMTG), DAG and ceramide. METHODS: Sixteen overweight to obese adults (BMI 30.6 ± 0.8; 67.2 ± 4.0 years of age) with either impaired fasting glucose, or impaired glucose tolerance completed one of two lifestyle interventions: DIWL (n = 8) or EX (n = 8). Insulin sensitivity was determined using hyperinsulinaemic-euglycaemic clamps. Intramyocellular lipids were measured in muscle biopsies using histochemistry and tandem mass spectrometry. RESULTS: Insulin sensitivity was improved with DIWL (20.6 ± 4.7%) and EX (19.2 ± 12.9%). Body weight and body fat were decreased by both interventions, with greater decreases in DIWL compared with EX. Muscle glycogen, IMTG content and oxidative capacity were all significantly (p < 0.05) decreased with DIWL and increased with EX. There were decreases in DAG with DIWL (-12.4 ± 14.6%) and EX (-40.9 ± 12.0%). Ceramide decreased with EX (-33.7 ± 11.2%), but not with DIWL. Dihydroceramide was decreased with both interventions. Sphingosine was decreased only with EX. Changes in total DAG, total ceramides and other sphingolipids did not correlate with changes in glucose disposal. Stearoyl-coenzyme A desaturase 1 (SCD1) content was decreased with DIWL (-19.5 ± 8.5%, p < 0.05), but increased with EX (19.6 ± 7.4%, p < 0.05). Diacylglycerol acyltransferase 1 (DGAT1) was unchanged with the interventions. CONCLUSIONS/INTERPRETATION: Diet-induced weight loss and exercise training both improved insulin resistance and decreased DAG, while only exercise decreased ceramides, despite the interventions having different effects on IMTG. These alterations may be mediated through differential changes in skeletal muscle capacity for oxidation and triacylglycerol synthesis. TRIAL REGISTRATION: ClinicalTrials.gov NCT00766298.
Resumo:
Usually the measurement of multi-segment foot and ankle complex kinematics is done with stationary motion capture devices which are limited to use in a gait laboratory. This study aimed to propose and validate a wearable system to measure the foot and ankle complex joint angles during gait in daily conditions, and then to investigate its suitability for clinical evaluations. The foot and ankle complex consisted of four segments (shank, hindfoot, forefoot, and toes), with an inertial measurement unit (3D gyroscopes and 3D accelerometers) attached to each segment. The angles between the four segments were calculated in the sagittal, coronal, and transverse planes using a new algorithm combining strap-down integration and detection of low-acceleration instants. To validate the joint angles measured by the wearable system, three subjects walked on a treadmill for five minutes at three different speeds. A camera-based stationary system that used a cluster of markers on each segment was used as a reference. To test the suitability of the system for clinical evaluation, the joint angle ranges were compared between a group of 10 healthy subjects and a group of 12 patients with ankle osteoarthritis, during two 50-m walking trials where the wearable system was attached to each subject. On average, over all joints and walking speeds, the RMS differences and correlation coefficients between the angular curves obtained using the wearable system and the stationary system were 1 deg and 0.93, respectively. Moreover, this system was able to detect significant alteration of foot and ankle function between the group of patients with ankle osteoarthritis and the group of healthy subjects. In conclusion, this wearable system was accurate and suitable for clinical evaluation when used to measure the multi-segment foot and ankle complex kinematics during long-distance walks in daily life conditions.
Resumo:
OBJECT: To determine whether glycine can be measured at 7 T in human brain with (1)H magnetic resonance spectroscopy (MRS). MATERIALS AND METHODS: The glycine singlet is overlapped by the larger signal of myo-inositol. Density matrix simulations were performed to determine the TE at which the myo-inositol signal was reduced the most, following a single spin-echo excitation. (1)H MRS was performed on an actively shielded 7 T scanner, in five healthy volunteers. RESULTS: At the TE of 30 ms, the myo-inositol signal intensity was substantially reduced. Quantification using LCModel yielded a glycine-to-creatine ratio of 0.14 +/- 0.01, with a Cramer-Rao lower bound (CRLB) of 7 +/- 1%. Furthermore, quantification of metabolites other than glycine was possible as well, with a CRLB mostly below 10%. CONCLUSION: It is possible to detect glycine at 7 T in human brain, at the short TE of 30 ms with a single spin-echo excitation scheme.
Resumo:
Mast cells are well known for their role in hypersensitivity reactions. However, there is increasing evidence that they might also participate in both developing and weakening atherosclerotic plaques, potentially causing plaque instability. Some clinical studies have therefore postulated the existence of relationships between blood β-tryptase levels and acute coronary syndromes. In this study, we investigated postmortem serum β-tryptase levels in a series of 90 autopsy cases with various degrees of coronary atherosclerosisthat had undergone medico-legal investigations. β-tryptase concentrations in these cases were compared to levels observed in 6 fatal anaphylaxis cases following contrast material administration. Postmortem serum β-tryptase concentrations in the anaphylactic deaths ranged from 146 to 979 ng/ml. In 9 out of 90 cases of cardiac deaths, β-tryptase levels were higher than clinical reference values of 11.4 ng/ml and ranged from 21 to 65 ng/ml. These results indicate that increased postmortem serum β-tryptase levels can be observed, though not systematically, in cardiac deaths with varying degrees of coronary atherosclerosis disease, thereby suggesting that mast cell activation in this disease cannot be ascertained by postmortem serum β-tryptase measurements.
Resumo:
This report describes the field application of the tilt sensing method for monitoring movement of the Black Hawk and Karl King Bridges. The study objectives were: to design a data acquisition system for tilt sensing equipment utilizing a telephone telemetry system; to monitor possible movement of the main span pier, Pier No. 2, on the Black Hawk Bridge in Lansing and the possible long-term movement of Pier No. 4 on the Karl King Bridge in Fort Dodge; and to assess the feasibility, reliability, and accuracy of the instrumentation system used in this study.