966 resultados para maturation of tRNA precursors
Resumo:
Sequence analysis reveals that the Bacillus subtilis 168 tuaABCDEFGH operon encodes enzymes required for the polymerization of teichuronic acid as well as for the synthesis of one of its precursors, the UDP-glucuronate. Mutants deficient in any of the tua genes, grown in batch cultures under conditions of phosphate limitation, were characterized by reduced amounts of uronate in their cell walls. The teichuronic acid operon belongs to the Pho regulon, as phosphate limitation induces its transcription. Placing the tuaABCDEFGH operon under the control of the inducible Pspac promoter allowed its constitutive expression independently of the phosphate concentration in the medium; the level of uronic acid in cell walls was dependent on the concentration of the inducer. Apparently, owing to an interdependence between teichoic and teichuronic acid incorporation into the cell wall, in examined growth conditions, the balance between the two polymers is maintained in order to insure a constant level of the wall negative charge.
Resumo:
The three organometallic complexes [(Cis-PtII (DDH) (2,5-Dihidroxibenzensulfonic)2, RhI (CO)2 Cl(2-Aminobenzothiazole) and RhI (CO)2 Cl(5-Cl-2-Methilbenzothiazole)] used in this study had been previously found to have a high in vitro activity against promastigote and amastigote like forms of Leishmania donovani. Here, the cytotoxic effect of these new organometallic complexes on the J-774 macrophages were studied. Only the RhI(CO)2 Cl (2-Aminobenzothiazole) complex induced substantial toxicity in the cells. Also, we assayed the effect of this complex on the parasite's biosynthesis of macromolecules. The RhI(CO)2Cl (5-Cl-2-Methylbenzothiazole) complex inhibited DNA, RNA, and protein synthesis. On the other hand, the two other compounds tested did not inhibit the incorporation of radioactive precursors. Finally important ultrastructural alterations in the parasites treated with the two non-cytotoxic complexes were observed.
Resumo:
Mitochondrial tRNA(Leu(UUR)) mutation m.3302A > G is associated with respiratory chain complex I deficiency and has been described as a rare cause of mostly adult-onset slowly progressive myopathy. Five families with 11 patients have been described so far; 5 of them died young due to cardiorespiratory failure. Here, we report on a segregation study in a family with an index patient who already presented at the age of 18 months with proximal muscular hypotonia, abnormal fatigability, and lactic acidosis. This early-onset myopathy was rapidly progressive. At 8 years, the patient is wheel-chair bound, requires nocturnal assisted ventilation, and suffers from recurrent respiratory infections. Severe complex I deficiency and nearly homoplasmy for m.3302A > G were found in muscle. We collected blood, hair, buccal swabs and muscle biopsies from asymptomatic adults in this pedigree and determined heteroplasmy levels in these tissues as well as OXPHOS activities in muscle. All participating asymptomatic adults had normal OXPHOS activities. In contrast to earlier reports, we found surprisingly little variation of heteroplasmy levels in different tissues of the same individual. Up to 45% mutation load in muscle and up to 38% mutation load in other tissues were found in non-affected adults. The phenotypic spectrum of tRNA(Leu(UUR)) m.3302A > G mutation seems to be wider than previously described. A threshold of more than 45% heteroplasmy in muscle seems to be necessary to alter complex I activity leading to clinical manifestation. The presented data may be helpful for prognostic considerations and counseling in affected families.
Resumo:
The type three secretion system (T3SS) operons of Chlamydiales bacteria are distributed in different clusters along their chromosomes and are conserved at both the level of sequence and genetic organization. A complete characterization of the temporal expression of multiple T3SS components at the transcriptional and protein levels has been performed in Parachlamydia acanthamoebae, replicating in its natural host cell Acanthamoeba castellanii. The T3SS components were classified in four different temporal clusters depending on their pattern of expression during the early, mid- and late phases of the infectious cycle. The putative T3SS transcription units predicted in Parachlamydia are similar to those described in Chlamydia trachomatis, suggesting that T3SS units of transcriptional expression are highly conserved among Chlamydiales bacteria. The maximal expression and activation of the T3SS of Parachlamydia occurred during the early to mid-phase of the infectious cycle corresponding to a critical phase during which the intracellular bacterium has (1) to evade and/or block the lytic pathway of the amoeba, (2) to differentiate from elementary bodies (EBs) to reticulate bodies (RBs), and (3) to modulate the maturation of its vacuole to create a replicative niche able to sustain efficient bacterial growth.
Resumo:
We have studied the activity of a calcium dependent transglutaminase (EC 2.3.2.13) during the growth of the parasite Plasmodium falciparum inside the infected human erythrocyte. There is only one detectable transglutaminase in the two-cell-system, and its origin is erythrocytic. No activity was detected in preparations of the parasite devoid of erythrocyte cytoplasm. The Michaelis Menten constants (Km) of the enzyme for the substrates N'N'dimethylcaseine and putrescine were undistinguishable whether the cell extracts used in their determination were obtained from normal or from infected red cells. The total activity of transglutaminase in stringently synchronized cultures, measured at 0.5mM Ca2+, decreased with the maturation of the parasite. However, a fraction which became irreversibly activated and independent of calcium concentration was detected. The proportion of this fraction grew with maturation; it represented only 20% of the activity in 20 hr-old-trophozoites while in 48-hr-schizonts it was more than 85% of the total activity. The activation of this fraction of transglutaminase did not depend on an increase in the erythrocyte cytoplasmic calcium, since most of the calcium was shown to be located in the parasite.
Resumo:
During brain development, spontaneous neuronal activity has been shown to play a crucial role in the maturation of neuronal circuitries. Activity-related signals may cause selective neuronal cell death and/or rearrangement of neuronal connectivity. To study the effects of sustained inhibitory activity on developing inhibitory (GABAergic) neurons, three-dimensional primary cell cultures of fetal rat telencephalon were used. In relatively immature cultures, muscimol (10 microns), a GABAA receptor agonist, induced a transient increase in apoptotic cell death, as evidenced by a cycloheximide-sensitive increase of free nucleosomes and an increased frequency of DNA double strand breaks (TUNEL labeling). Furthermore, muscimol caused an irreversible reduction of glutamic acid decarboxylase activity, indicating a loss of GABAergic neurons. The muscimol-induced death of GABAergic neurons was attenuated by the GABAA receptor blockers bicuculline (100 microns) and picrotoxin (100 microns), by depolarizing potassium concentrations (30 mM KCl) and by the L-type calcium channel activator BAY K8644 (2 microns). As compared to the cholinergic marker (choline acetyltransferase activity), glutamic acid decarboxylase activity was significantly more affected by various agents known to inhibit neuronal activity, including tetrodotoxin (1 micron), flunarizine (5 microns), MK 801 (50 microns) and propofol (40 microns). The present results suggest that the survival of a subpopulation of immature GABAergic neurons is dependent on sustained neuronal activity and that these neurons may undergo apoptotic cell death in response to GABAA autoreceptor activation.
Resumo:
In order to investigate purin and primidin metabolism pathways in hepatitis, adenosine deaminase (ADA) and guanosine deaminase (GDA) activities in sera of patients with different types and manifestations of viral hepatitis disease (A, B, C, D, E, chronic, acute) were investigated and compared with the control group of healthy individuals. Hepatitis cases were classified with respect to their serological findings and clinics. When compared all the hepatitis cases with the controls, levels of aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase enzymes, as well as ADA and GDA, were significantly higher than the control group (p<0.01). Levels of ADA and GDA in hepatitis cases were determined as 26.07±11.98 IU/l and 2.37±1.91 IU/l, respectively. When compared their ADA and GDA levels amongst the classified hepatitis groups, there was no difference in ADA levels amongst cases (p>0.05). However, GDA levels in hepatitis A group were closed to the controls. Increase in serum ADA activities in hepatitis forms may be dependent on and reflect the increase in phagocytic activity of macrophages and maturation of T-lymphocytes, and may be valuable in monitoring in viral hepatitis cases.
Resumo:
Natural onyx agate from Mali was investigated in an integrated mineralogical and chemical study to reveal the origin of the unusual black colouration. Detailed studies by polarizing microscopy, scanning electron microscopy and micro-Raman spectroscopy showed that the colour of the dark bands is related to the incorporation of small particles of carbon (low-crystalline graphite) up to 200 nm in size into the cryptocrystalline silica matrix. The dark bands have carbon contents of 1.88 wt.%. The location of the graphite particles is closely related to the primary structural banding in the chalcedony. Cathodoluminescence data shows that the banding is interrupted by small fissures containing secondary hydrothermal quartz. The carbon isotope composition (delta C-13 value of -31.1+/-0.2 parts per thousand) of the carbonaceous material points to an organic precursor. Both the direct hydrothermal formation of graphite from methane under elevated temperature and the graphitization of organic precursors by secondary hydrothermal or metamorphic overprint are possible explanations for the colour of the dark bands. The graphitization of organic precursors results in an intense electron spin resonance line at g(eff) = 2.0026.
Resumo:
Recent advances have stimulated new interest in the area of crystal arthritis, as microcrystals can be considered to be endogenous "danger signals" and are potent stimulators of immune as well as non-immune cells. The best known microcrystals include urate (MSU), and calcium pyrophosphate (CPP) crystals, associated with gout and pseudogout, respectively. Acute inflammation is the hallmark of the acute tissue reaction to crystals in both gout and pseudogout. The mechanisms leading to joint inflammation in these diseases involve first crystal formation and subsequent coating with serum proteins. Crystals can then interact with plasma cell membrane, either directly or via membrane receptors, leading to NLRP3 activation, proteolytic cleavage and maturation of pro-interleukin-1β (pro-IL1β) and secretion of mature IL1β. Once released, this cytokine orchestrates a series of events leading to endothelial cell activation and neutrophil recruitment. Ultimately, gout resolution involves several mechanisms including monocyte differentiation into macrophage, clearance of apoptotic neutrophils by macrophages, production of Transforming Growth Factor (TGF-β) and modification of protein coating on the crystal surface. This review will examine these different steps.
Resumo:
Arenaviruses include lethal human pathogens which pose serious public health threats. So far, no FDA approved vaccines are available against arenavirus infections, and therapeutic options are limited, making the identification of novel drug targets for the development of efficacious therapeutics an urgent need. Arenaviruses are comprised of two RNA genome segments and four proteins, the polymerase L, the envelope glycoprotein GP, the matrix protein Z, and the nucleoprotein NP. A crucial step in the arenavirus life-cycle is the biosynthesis and maturation of the GP precursor (GPC) by cellular signal peptidases and the cellular enzyme Subtilisin Kexin Isozyme-1 (SKI-1)/Site-1 Protease (S1P) yielding a tripartite mature GP complex formed by GP1/GP2 and a stable signal peptide (SSP). GPC cleavage by SKI-1/S1P is crucial for fusion competence and incorporation of mature GP into nascent budding virion particles. In a first part of our review, we cover basic aspects and newer developments in the biosynthesis of arenavirus GP and its molecular interaction with SKI-1/S1P. A second part will then highlight the potential of SKI-1/S1P-mediated processing of arenavirus GPC as a novel target for therapeutic intervention to combat human pathogenic arenaviruses.
Resumo:
There is no effective chemotherapy against diseases caused by Phytomonas sp., a plant trypanosomatid responsible for economic losses in major crops. We tested three triazolo-pyrimidine complexes [two with Pt(II), and another with Ru(III)] against promastigotes of Phytomonas sp. isolated from Euphorbia characias. The incorporation of radiolabelled precursors, ultrastructural alterations and changes in the pattern of metabolite excretion were examined. Different degrees of toxicity were found for each complex: the platinun compound showed an inhibition effect on nucleic acid synthesis, provoking alterations on the levels of mitochondria, nucleus and glycosomes. These results, together with others reported previously in our laboratory about the activity of pyrimidine derivatives, reflect the potential of these compounds as agents in the treatment of Phytomonas sp.
Resumo:
Episodic memories for autobiographical events that happen in unique spatiotemporal contexts are central to defining who we are. Yet, before 2 years of age, children are unable to form or store episodic memories for recall later in life, a phenomenon known as infantile amnesia. Here, we studied the development of allocentric spatial memory, a fundamental component of episodic memory, in two versions of a real-world memory task requiring 18 month- to 5-year-old children to search for rewards hidden beneath cups distributed in an open-field arena. Whereas children 25-42-months-old were not capable of discriminating three reward locations among 18 possible locations in absence of local cues marking these locations, children older than 43 months found the reward locations reliably. These results support previous findings suggesting that allocentric spatial memory, if present, is only rudimentary in children under 3.5 years of age. However, when tested with only one reward location among four possible locations, children 25-39-months-old found the reward reliably in absence of local cues, whereas 18-23-month-olds did not. Our findings thus show that the ability to form a basic allocentric representation of the environment is present by 2 years of age, and its emergence coincides temporally with the offset of infantile amnesia. However, the ability of children to distinguish and remember closely related spatial locations improves from 2 to 3.5 years of age, a developmental period marked by persistent deficits in long-term episodic memory known as childhood amnesia. These findings support the hypothesis that the differential maturation of distinct hippocampal circuits contributes to the emergence of specific memory processes during early childhood.
Resumo:
The increase of malaria transmission in the Pacific Coast of Colombia during the occurrence of El Niño warm event has been found not to be linked to increases in the density of the vector Anopheles albimanus, but to other temperature-sensitive variables such as longevity, duration of the gonotrophic cycle or the sporogonic period of Plasmodium. The present study estimated the effects of temperature on duration of the gonotrophic cycle and on maturation of the ovaries of An. albimanus. Blood fed adult mosquitoes were exposed to temperatures of 24, 27, and 30°C, held individually in oviposition cages and assessed at 12 h intervals. At 24, 27, and 30°C the mean development time of the oocytes was 91.2 h (95% C.I.: 86.5-96), 66.2 h (61.5-70.8), and 73.1 h (64-82.3), respectively. The mean duration of the gonotrophic cycle for these three temperatures was 88.4 h (81.88-94.9), 75 h (71.4-78.7), and 69.1 h (64.6-73.6) respectively. These findings indicate that both parameters in An. albimanus are reduced when temperatures rose from 24 to 30°C, in a nonlinear manner. According to these results the increase in malaria transmission during El Niño in Colombia could be associated with a shortening of the gonotrophic cycle in malaria vectors, which could enhance the frequency of man-vector contact, affecting the incidence of the disease.
Resumo:
An area of increasingly interest for the understanding of cell signaling are the spatio-temporal aspects of the different enzymes involved in lipid mediator generation (eicosanoid-forming enzymes, phospholipases and their regulatory kinases and phosphatases) and pools of lipid precursors. The compartmentalization of signaling components within discrete and dynamic sites in the cell is critical for specificity and efficiency of enzymatic reactions of phosphorilation, enzyme activation and function. We hypothesized that lipid bodies - inducible non-membrane bound cytoplasmic lipid domains - function as specialized intracellular sites of compartmentalization of signaling with major roles in lipid mediator formation within leukocytes engaged in inflammatory process. Over the past years substantial progresses have been made demonstrating that all enzymes involved in eicosanoid synthesis localize at lipid bodies and lipid bodies are distinct sites for eicosanoid generation. Here we will review our current knowledge on the mechanisms of formation and functions of lipid bodies pertinent to inflammation.
Resumo:
Immunoreactivity to calbindin D-28k, a vitamin D-dependent calcium-binding protein, is expressed by neuronal subpopulations of dorsal root ganglia (DRG) in the chick embryo. To determine whether the expression of this phenotypic characteristic is maintained in vitro and controlled by environmental factors, dissociated DRG cell cultures were performed under various conditions. Subpopulations of DRG cells cultured at embryonic day 10 displayed calbindin-immunoreactive cell bodies and neurites in both neuron-enriched or mixed DRG cell cultures. The number of calbindin-immunoreactive ganglion cells increased up to 7-10 days of culture independently of the changes occurring in the whole neuronal population. The presence of non-neuronal cells, which promotes the maturation of the sensory neurons, tended to reduce the percentage of calbindin-immunoreactive cell bodies. Addition of horse serum enhanced both the number of calbindin-positive neurons and the intensity of the immunostaining, but does not prevent the decline of the subpopulation of calbindin-immunoreactive neurons during the second week of culture; on the contrary, the addition of muscular extract to cultures at 10 days maintained the number of calbindin-expressing neurons. While calbindin-immunoreactive cell bodies grown in culture were small- or medium-sized, no correlation was found between cell size and immunostaining density. At the ultrastructural level, the calbindin immunoreaction was distributed throughout the neuroplasm. These results indicate that the expression of calbindin by sensory neurons grown in vitro may be modulated by horse serum-contained factors or interaction with non-neuronal cells. As distinct from horse serum, muscular extract is able to maintain the expression of calbindin by a subpopulation of DRG cells.