973 resultados para mathematical functions
Resumo:
Mathematics education literature has called for an abandonment of ontological and epistemological ideologies that have often divided theory-based practice. Instead, a consilience of theories has been sought which would leverage the strengths of each learning theory and so positively impact upon contemporary educational practice. This research activity is based upon Popper’s notion of three knowledge worlds which differentiates the knowledge shared in a community from the personal knowledge of the individual, and Bereiter’s characterisation of understanding as the individual’s relationship to tool-like knowledge. Using these notions, a re-conceptualisation of knowledge and understanding and a subsequent re-consideration of learning theories are proposed as a way to address the challenge set by literature. Referred to as the alternative theoretical framework, the proposed theory accounts for the scaffolded transformation of each individual’s unique understanding, whilst acknowledging the existence of a body of domain knowledge shared amongst participants in a scientific community of practice. The alternative theoretical framework is embodied within an operational model that is accompanied by a visual nomenclature with which to describe consensually developed shared knowledge and personal understanding. This research activity has sought to iteratively evaluate this proposed theory through the practical application of the operational model and visual nomenclature to the domain of early-number counting, addition and subtraction. This domain of mathematical knowledge has been comprehensively analysed and described. Through this process, the viability of the proposed theory as a tool with which to discuss and thus improve the knowledge and understanding with the domain of mathematics has been validated. Putting of the proposed theory into practice has lead to the theory’s refinement and the subsequent achievement of a solid theoretical base for the future development of educational tools to support teaching and learning practice, including computer-mediated learning environments. Such future activity, using the proposed theory, will advance contemporary mathematics educational practice by bringing together the strengths of cognitivist, constructivist and post-constructivist learning theories.
Resumo:
Using six kinds of lattice types (4×4 ,5×5 , and6×6 square lattices;3×3×3 cubic lattice; and2+3+4+3+2 and4+5+6+5+4 triangular lattices), three different size alphabets (HP ,HNUP , and 20 letters), and two energy functions, the designability of proteinstructures is calculated based on random samplings of structures and common biased sampling (CBS) of proteinsequence space. Then three quantities stability (average energy gap),foldability, and partnum of the structure, which are defined to elucidate the designability, are calculated. The authors find that whatever the type of lattice, alphabet size, and energy function used, there will be an emergence of highly designable (preferred) structure. For all cases considered, the local interactions reduce degeneracy and make the designability higher. The designability is sensitive to the lattice type, alphabet size, energy function, and sampling method of the sequence space. Compared with the random sampling method, both the CBS and the Metropolis Monte Carlo sampling methods make the designability higher. The correlation coefficients between the designability, stability, and foldability are mostly larger than 0.5, which demonstrate that they have strong correlation relationship. But the correlation relationship between the designability and the partnum is not so strong because the partnum is independent of the energy. The results are useful in practical use of the designability principle, such as to predict the proteintertiary structure.
Resumo:
Many of the classification algorithms developed in the machine learning literature, including the support vector machine and boosting, can be viewed as minimum contrast methods that minimize a convex surrogate of the 0–1 loss function. The convexity makes these algorithms computationally efficient. The use of a surrogate, however, has statistical consequences that must be balanced against the computational virtues of convexity. To study these issues, we provide a general quantitative relationship between the risk as assessed using the 0–1 loss and the risk as assessed using any nonnegative surrogate loss function. We show that this relationship gives nontrivial upper bounds on excess risk under the weakest possible condition on the loss function—that it satisfies a pointwise form of Fisher consistency for classification. The relationship is based on a simple variational transformation of the loss function that is easy to compute in many applications. We also present a refined version of this result in the case of low noise, and show that in this case, strictly convex loss functions lead to faster rates of convergence of the risk than would be implied by standard uniform convergence arguments. Finally, we present applications of our results to the estimation of convergence rates in function classes that are scaled convex hulls of a finite-dimensional base class, with a variety of commonly used loss functions.
Resumo:
We study model selection strategies based on penalized empirical loss minimization. We point out a tight relationship between error estimation and data-based complexity penalization: any good error estimate may be converted into a data-based penalty function and the performance of the estimate is governed by the quality of the error estimate. We consider several penalty functions, involving error estimates on independent test data, empirical VC dimension, empirical VC entropy, and margin-based quantities. We also consider the maximal difference between the error on the first half of the training data and the second half, and the expected maximal discrepancy, a closely related capacity estimate that can be calculated by Monte Carlo integration. Maximal discrepancy penalty functions are appealing for pattern classification problems, since their computation is equivalent to empirical risk minimization over the training data with some labels flipped.
Resumo:
We investigate the use of certain data-dependent estimates of the complexity of a function class, called Rademacher and Gaussian complexities. In a decision theoretic setting, we prove general risk bounds in terms of these complexities. We consider function classes that can be expressed as combinations of functions from basis classes and show how the Rademacher and Gaussian complexities of such a function class can be bounded in terms of the complexity of the basis classes. We give examples of the application of these techniques in finding data-dependent risk bounds for decision trees, neural networks and support vector machines.
Resumo:
We propose new bounds on the error of learning algorithms in terms of a data-dependent notion of complexity. The estimates we establish give optimal rates and are based on a local and empirical version of Rademacher averages, in the sense that the Rademacher averages are computed from the data, on a subset of functions with small empirical error. We present some applications to classification and prediction with convex function classes, and with kernel classes in particular.
Resumo:
One of the nice properties of kernel classifiers such as SVMs is that they often produce sparse solutions. However, the decision functions of these classifiers cannot always be used to estimate the conditional probability of the class label. We investigate the relationship between these two properties and show that these are intimately related: sparseness does not occur when the conditional probabilities can be unambiguously estimated. We consider a family of convex loss functions and derive sharp asymptotic results for the fraction of data that becomes support vectors. This enables us to characterize the exact trade-off between sparseness and the ability to estimate conditional probabilities for these loss functions.
Resumo:
We study the rates of growth of the regret in online convex optimization. First, we show that a simple extension of the algorithm of Hazan et al eliminates the need for a priori knowledge of the lower bound on the second derivatives of the observed functions. We then provide an algorithm, Adaptive Online Gradient Descent, which interpolates between the results of Zinkevich for linear functions and of Hazan et al for strongly convex functions, achieving intermediate rates between [square root T] and [log T]. Furthermore, we show strong optimality of the algorithm. Finally, we provide an extension of our results to general norms.
Resumo:
Background The majority of peptide bonds in proteins are found to occur in the trans conformation. However, for proline residues, a considerable fraction of Prolyl peptide bonds adopt the cis form. Proline cis/trans isomerization is known to play a critical role in protein folding, splicing, cell signaling and transmembrane active transport. Accurate prediction of proline cis/trans isomerization in proteins would have many important applications towards the understanding of protein structure and function. Results In this paper, we propose a new approach to predict the proline cis/trans isomerization in proteins using support vector machine (SVM). The preliminary results indicated that using Radial Basis Function (RBF) kernels could lead to better prediction performance than that of polynomial and linear kernel functions. We used single sequence information of different local window sizes, amino acid compositions of different local sequences, multiple sequence alignment obtained from PSI-BLAST and the secondary structure information predicted by PSIPRED. We explored these different sequence encoding schemes in order to investigate their effects on the prediction performance. The training and testing of this approach was performed on a newly enlarged dataset of 2424 non-homologous proteins determined by X-Ray diffraction method using 5-fold cross-validation. Selecting the window size 11 provided the best performance for determining the proline cis/trans isomerization based on the single amino acid sequence. It was found that using multiple sequence alignments in the form of PSI-BLAST profiles could significantly improve the prediction performance, the prediction accuracy increased from 62.8% with single sequence to 69.8% and Matthews Correlation Coefficient (MCC) improved from 0.26 with single local sequence to 0.40. Furthermore, if coupled with the predicted secondary structure information by PSIPRED, our method yielded a prediction accuracy of 71.5% and MCC of 0.43, 9% and 0.17 higher than the accuracy achieved based on the singe sequence information, respectively. Conclusion A new method has been developed to predict the proline cis/trans isomerization in proteins based on support vector machine, which used the single amino acid sequence with different local window sizes, the amino acid compositions of local sequence flanking centered proline residues, the position-specific scoring matrices (PSSMs) extracted by PSI-BLAST and the predicted secondary structures generated by PSIPRED. The successful application of SVM approach in this study reinforced that SVM is a powerful tool in predicting proline cis/trans isomerization in proteins and biological sequence analysis.