975 resultados para markov chains monte carlo methods
Resumo:
Photopolymerization is commonly used in a broad range of bioapplications, such as drug delivery, tissue engineering, and surgical implants, where liquid materials are injected and then hardened by means of illumination to create a solid polymer network. However, photopolymerization using a probe, e.g., needle guiding both the liquid and the curing illumination, has not been thoroughly investigated. We present a Monte Carlo model that takes into account the dynamic absorption and scattering parameters as well as solid-liquid boundaries of the photopolymer to yield the shape and volume of minimally invasively injected, photopolymerized hydrogels. In the first part of the article, our model is validated using a set of well-known poly(ethylene glycol) dimethacrylate hydrogels showing an excellent agreement between simulated and experimental volume-growth-rates. In the second part, in situ experimental results and simulations for photopolymerization in tissue cavities are presented. It was found that a cavity with a volume of 152 mm3 can be photopolymerized from the output of a 0.28-mm2 fiber by adding scattering lipid particles while only a volume of 38 mm3 (25%) was achieved without particles. The proposed model provides a simple and robust method to solve complex photopolymerization problems, where the dimension of the light source is much smaller than the volume of the photopolymerizable hydrogel.
Resumo:
A number of geophysical methods, such as ground-penetrating radar (GPR), have the potential to provide valuable information on hydrological properties in the unsaturated zone. In particular, the stochastic inversion of such data within a coupled geophysical-hydrological framework may allow for the effective estimation of vadose zone hydraulic parameters and their corresponding uncertainties. A critical issue in stochastic inversion is choosing prior parameter probability distributions from which potential model configurations are drawn and tested against observed data. A well chosen prior should reflect as honestly as possible the initial state of knowledge regarding the parameters and be neither overly specific nor too conservative. In a Bayesian context, combining the prior with available data yields a posterior state of knowledge about the parameters, which can then be used statistically for predictions and risk assessment. Here we investigate the influence of prior information regarding the van Genuchten-Mualem (VGM) parameters, which describe vadose zone hydraulic properties, on the stochastic inversion of crosshole GPR data collected under steady state, natural-loading conditions. We do this using a Bayesian Markov chain Monte Carlo (MCMC) inversion approach, considering first noninformative uniform prior distributions and then more informative priors derived from soil property databases. For the informative priors, we further explore the effect of including information regarding parameter correlation. Analysis of both synthetic and field data indicates that the geophysical data alone contain valuable information regarding the VGM parameters. However, significantly better results are obtained when we combine these data with a realistic, informative prior.
Resumo:
Geophysical methods have the potential to provide valuable information on hydrological properties in the unsaturated zone. In particular, time-lapse geophysical data, when coupled with a hydrological model and inverted stochastically, may allow for the effective estimation of subsurface hydraulic parameters and their corresponding uncertainties. In this study, we use a Bayesian Markov-chain-Monte-Carlo (MCMC) inversion approach to investigate how much information regarding vadose zone hydraulic properties can be retrieved from time-lapse crosshole GPR data collected at the Arrenaes field site in Denmark during a forced infiltration experiment.
Resumo:
In this paper, we present a computer simulation study of the ion binding process at an ionizable surface using a semi-grand canonical Monte Carlo method that models the surface as a discrete distribution of charged and neutral functional groups in equilibrium with explicit ions modelled in the context of the primitive model. The parameters of the simulation model were tuned and checked by comparison with experimental titrations of carboxylated latex particles in the presence of different ionic strengths of monovalent ions. The titration of these particles was analysed by calculating the degree of dissociation of the latex functional groups vs. pH curves at different background salt concentrations. As the charge of the titrated surface changes during the simulation, a procedure to keep the electroneutrality of the system is required. Here, two approaches are used with the choice depending on the ion selected to maintain electroneutrality: counterion or coion procedures. We compare and discuss the difference between the procedures. The simulations also provided a microscopic description of the electrostatic double layer (EDL) structure as a function of p H and ionic strength. The results allow us to quantify the effect of the size of the background salt ions and of the surface functional groups on the degree of dissociation. The non-homogeneous structure of the EDL was revealed by plotting the counterion density profiles around charged and neutral surface functional groups.
Resumo:
The comparison of radiotherapy techniques regarding secondary cancer risk has yielded contradictory results possibly stemming from the many different approaches used to estimate risk. The purpose of this study was to make a comprehensive evaluation of different available risk models applied to detailed whole-body dose distributions computed by Monte Carlo for various breast radiotherapy techniques including conventional open tangents, 3D conformal wedged tangents and hybrid intensity modulated radiation therapy (IMRT). First, organ-specific linear risk models developed by the International Commission on Radiological Protection (ICRP) and the Biological Effects of Ionizing Radiation (BEIR) VII committee were applied to mean doses for remote organs only and all solid organs. Then, different general non-linear risk models were applied to the whole body dose distribution. Finally, organ-specific non-linear risk models for the lung and breast were used to assess the secondary cancer risk for these two specific organs. A total of 32 different calculated absolute risks resulted in a broad range of values (between 0.1% and 48.5%) underlying the large uncertainties in absolute risk calculation. The ratio of risk between two techniques has often been proposed as a more robust assessment of risk than the absolute risk. We found that the ratio of risk between two techniques could also vary substantially considering the different approaches to risk estimation. Sometimes the ratio of risk between two techniques would range between values smaller and larger than one, which then translates into inconsistent results on the potential higher risk of one technique compared to another. We found however that the hybrid IMRT technique resulted in a systematic reduction of risk compared to the other techniques investigated even though the magnitude of this reduction varied substantially with the different approaches investigated. Based on the epidemiological data available, a reasonable approach to risk estimation would be to use organ-specific non-linear risk models applied to the dose distributions of organs within or near the treatment fields (lungs and contralateral breast in the case of breast radiotherapy) as the majority of radiation-induced secondary cancers are found in the beam-bordering regions.
Resumo:
In this paper, a hybrid simulation-based algorithm is proposed for the StochasticFlow Shop Problem. The main idea of the methodology is to transform the stochastic problem into a deterministic problem and then apply simulation to the latter. In order to achieve this goal, we rely on Monte Carlo Simulation and an adapted version of a deterministic heuristic. This approach aims to provide flexibility and simplicity due to the fact that it is not constrained by any previous assumption and relies in well-tested heuristics.
Resumo:
In this paper, a hybrid simulation-based algorithm is proposed for the StochasticFlow Shop Problem. The main idea of the methodology is to transform the stochastic problem into a deterministic problem and then apply simulation to the latter. In order to achieve this goal, we rely on Monte Carlo Simulation and an adapted version of a deterministic heuristic. This approach aims to provide flexibility and simplicity due to the fact that it is not constrained by any previous assumption and relies in well-tested heuristics.
Resumo:
We report Monte Carlo results for a nonequilibrium Ising-like model in two and three dimensions. Nearest-neighbor interactions J change sign randomly with time due to competing kinetics. There follows a fast and random, i.e., spin-configuration-independent diffusion of Js, of the kind that takes place in dilute metallic alloys when magnetic ions diffuse. The system exhibits steady states of the ferromagnetic (antiferromagnetic) type when the probability p that J>0 is large (small) enough. No counterpart to the freezing phenomena found in quenched spin glasses occurs. We compare our results with existing mean-field and exact ones, and obtain information about critical behavior.
Resumo:
Résumé : La radiothérapie par modulation d'intensité (IMRT) est une technique de traitement qui utilise des faisceaux dont la fluence de rayonnement est modulée. L'IMRT, largement utilisée dans les pays industrialisés, permet d'atteindre une meilleure homogénéité de la dose à l'intérieur du volume cible et de réduire la dose aux organes à risque. Une méthode usuelle pour réaliser pratiquement la modulation des faisceaux est de sommer de petits faisceaux (segments) qui ont la même incidence. Cette technique est appelée IMRT step-and-shoot. Dans le contexte clinique, il est nécessaire de vérifier les plans de traitement des patients avant la première irradiation. Cette question n'est toujours pas résolue de manière satisfaisante. En effet, un calcul indépendant des unités moniteur (représentatif de la pondération des chaque segment) ne peut pas être réalisé pour les traitements IMRT step-and-shoot, car les poids des segments ne sont pas connus à priori, mais calculés au moment de la planification inverse. Par ailleurs, la vérification des plans de traitement par comparaison avec des mesures prend du temps et ne restitue pas la géométrie exacte du traitement. Dans ce travail, une méthode indépendante de calcul des plans de traitement IMRT step-and-shoot est décrite. Cette méthode est basée sur le code Monte Carlo EGSnrc/BEAMnrc, dont la modélisation de la tête de l'accélérateur linéaire a été validée dans une large gamme de situations. Les segments d'un plan de traitement IMRT sont simulés individuellement dans la géométrie exacte du traitement. Ensuite, les distributions de dose sont converties en dose absorbée dans l'eau par unité moniteur. La dose totale du traitement dans chaque élément de volume du patient (voxel) peut être exprimée comme une équation matricielle linéaire des unités moniteur et de la dose par unité moniteur de chacun des faisceaux. La résolution de cette équation est effectuée par l'inversion d'une matrice à l'aide de l'algorithme dit Non-Negative Least Square fit (NNLS). L'ensemble des voxels contenus dans le volume patient ne pouvant être utilisés dans le calcul pour des raisons de limitations informatiques, plusieurs possibilités de sélection ont été testées. Le meilleur choix consiste à utiliser les voxels contenus dans le Volume Cible de Planification (PTV). La méthode proposée dans ce travail a été testée avec huit cas cliniques représentatifs des traitements habituels de radiothérapie. Les unités moniteur obtenues conduisent à des distributions de dose globale cliniquement équivalentes à celles issues du logiciel de planification des traitements. Ainsi, cette méthode indépendante de calcul des unités moniteur pour l'IMRT step-andshootest validée pour une utilisation clinique. Par analogie, il serait possible d'envisager d'appliquer une méthode similaire pour d'autres modalités de traitement comme par exemple la tomothérapie. Abstract : Intensity Modulated RadioTherapy (IMRT) is a treatment technique that uses modulated beam fluence. IMRT is now widespread in more advanced countries, due to its improvement of dose conformation around target volume, and its ability to lower doses to organs at risk in complex clinical cases. One way to carry out beam modulation is to sum smaller beams (beamlets) with the same incidence. This technique is called step-and-shoot IMRT. In a clinical context, it is necessary to verify treatment plans before the first irradiation. IMRT Plan verification is still an issue for this technique. Independent monitor unit calculation (representative of the weight of each beamlet) can indeed not be performed for IMRT step-and-shoot, because beamlet weights are not known a priori, but calculated by inverse planning. Besides, treatment plan verification by comparison with measured data is time consuming and performed in a simple geometry, usually in a cubic water phantom with all machine angles set to zero. In this work, an independent method for monitor unit calculation for step-and-shoot IMRT is described. This method is based on the Monte Carlo code EGSnrc/BEAMnrc. The Monte Carlo model of the head of the linear accelerator is validated by comparison of simulated and measured dose distributions in a large range of situations. The beamlets of an IMRT treatment plan are calculated individually by Monte Carlo, in the exact geometry of the treatment. Then, the dose distributions of the beamlets are converted in absorbed dose to water per monitor unit. The dose of the whole treatment in each volume element (voxel) can be expressed through a linear matrix equation of the monitor units and dose per monitor unit of every beamlets. This equation is solved by a Non-Negative Least Sqvare fif algorithm (NNLS). However, not every voxels inside the patient volume can be used in order to solve this equation, because of computer limitations. Several ways of voxel selection have been tested and the best choice consists in using voxels inside the Planning Target Volume (PTV). The method presented in this work was tested with eight clinical cases, which were representative of usual radiotherapy treatments. The monitor units obtained lead to clinically equivalent global dose distributions. Thus, this independent monitor unit calculation method for step-and-shoot IMRT is validated and can therefore be used in a clinical routine. It would be possible to consider applying a similar method for other treatment modalities, such as for instance tomotherapy or volumetric modulated arc therapy.
Resumo:
The hydrological and biogeochemical processes that operate in catchments influence the ecological quality of freshwater systems through delivery of fine sediment, nutrients and organic matter. Most models that seek to characterise the delivery of diffuse pollutants from land to water are reductionist. The multitude of processes that are parameterised in such models to ensure generic applicability make them complex and difficult to test on available data. Here, we outline an alternative - data-driven - inverse approach. We apply SCIMAP, a parsimonious risk based model that has an explicit treatment of hydrological connectivity. we take a Bayesian approach to the inverse problem of determining the risk that must be assigned to different land uses in a catchment in order to explain the spatial patterns of measured in-stream nutrient concentrations. We apply the model to identify the key sources of nitrogen (N) and phosphorus (P) diffuse pollution risk in eleven UK catchments covering a range of landscapes. The model results show that: 1) some land use generates a consistently high or low risk of diffuse nutrient pollution; but 2) the risks associated with different land uses vary both between catchments and between nutrients; and 3) that the dominant sources of P and N risk in the catchment are often a function of the spatial configuration of land uses. Taken on a case-by-case basis, this type of inverse approach may be used to help prioritise the focus of interventions to reduce diffuse pollution risk for freshwater ecosystems. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Probabilistic inversion methods based on Markov chain Monte Carlo (MCMC) simulation are well suited to quantify parameter and model uncertainty of nonlinear inverse problems. Yet, application of such methods to CPU-intensive forward models can be a daunting task, particularly if the parameter space is high dimensional. Here, we present a 2-D pixel-based MCMC inversion of plane-wave electromagnetic (EM) data. Using synthetic data, we investigate how model parameter uncertainty depends on model structure constraints using different norms of the likelihood function and the model constraints, and study the added benefits of joint inversion of EM and electrical resistivity tomography (ERT) data. Our results demonstrate that model structure constraints are necessary to stabilize the MCMC inversion results of a highly discretized model. These constraints decrease model parameter uncertainty and facilitate model interpretation. A drawback is that these constraints may lead to posterior distributions that do not fully include the true underlying model, because some of its features exhibit a low sensitivity to the EM data, and hence are difficult to resolve. This problem can be partly mitigated if the plane-wave EM data is augmented with ERT observations. The hierarchical Bayesian inverse formulation introduced and used herein is able to successfully recover the probabilistic properties of the measurement data errors and a model regularization weight. Application of the proposed inversion methodology to field data from an aquifer demonstrates that the posterior mean model realization is very similar to that derived from a deterministic inversion with similar model constraints.
Resumo:
Tutkielman päätavoitteena oli selvittää, miten Monte Carlo –simulointi soveltuu strategisten reaalioptioiden arvonmääritykseen. Tutkielman teoriaosuudessa käytiin läpi reaalioptioteoriaa ja Monte Carlo –simulointimenetelmää toiminta-analyyttisella tutkimusotteella. Tuloksena todettiin, että simulointimenetelmää on reaalioptioiden yhteydessä yleensä käytetty, kun muu menetelmä ei ole ollut mahdollinen. Tutkielman pääpaino on tapaustutkimukseen pohjautuvassa empiriaosuudessa, jossa rakennettiin päätöksentekometodologista tutkimusotetta seuraten simulointimalli, jolla tutkittiin Voest Alpine Stahl Ag:n vaihtoehtoisten hinnoittelustrategioiden taloudellista vaikutusta. Mallin rakentaminen perustui yrityksen tilinpäätösaineistoon. Havaittiin, ettei yritys ole valitsemansa strategian vuoksi juurikaan menettänyt tuottoja, mutta toisaalta pelkkä tilinpäätösaineisto ei riitä kovin luotettavaan tarkasteluun. Vuosikertomusten antaman tiedon pohjalta analysoitiin lisäksi yrityksen toiminnassa havaittuja reaalioptioita. Monte Carlo –simulointimenetelmä sopii reaalioptioiden arvonmääritykseen, mutta kriittisiä tekijöitä ovat mallin rakentaminen ja lähtötietojen oikeellisuus. Numeerisen mallin rinnalla on siksi aiheellista suorittaa myös laadullista reaalioptioanalyysia.
Resumo:
The structure of the electric double layer in contact with discrete and continuously charged planar surfaces is studied within the framework of the primitive model through Monte Carlo simulations. Three different discretization models are considered together with the case of uniform distribution. The effect of discreteness is analyzed in terms of charge density profiles. For point surface groups,a complete equivalence with the situation of uniformly distributed charge is found if profiles are exclusively analyzed as a function of the distance to the charged surface. However, some differences are observed moving parallel to the surface. Significant discrepancies with approaches that do not account for discreteness are reported if charge sites of finite size placed on the surface are considered.
Resumo:
OBJETIVO: Avaliar a dose absorvida em folículos tireoidianos devido aos elétrons de baixa energia, como os elétrons Auger e os de conversão interna, além das partículas beta, para os radioisótopos de iodo (131I, 132I, 133I, 134I e 135I) usando o método Monte Carlo. MATERIAIS E MÉTODOS: O cálculo da dose foi feito ao nível folicular, simulando elétrons Auger, conversão interna e partículas beta, com o código MCNP4C. Os folículos (colóide e células foliculares) foram modelados como esferas, com diâmetros do colóide variando de 30 a 500 mm. A densidade considerada para os folículos foi a da água (1,0 g.cm-³). RESULTADOS: Considerando partículas de baixa energia, o percentual de contribuição do 131I na dose total absorvida pelo colóide é de aproximadamente 25%, enquanto os isótopos de meia-vida física curta apresentaram contribuição de 75%. Para as células foliculares, esse percentual é ainda maior, chegando a 87% para os iodos de meia-vida curta e 13% para o 131I. CONCLUSÃO: Com base nos resultados obtidos, pode-se mostrar a importância de se considerar partículas de baixa energia na contribuição para a dose total absorvida ao nível folicular (colóide e células foliculares) devido aos radioisótopos de iodo (131I, 132I, 133I, 134I e 135I).
Resumo:
OBJETIVO: Determinar, por simulação Monte Carlo, os espectros de feixes de cobaltoterapia em profundidade na água e fatores de correção para doses absorvidas em dosímetros termoluminescentes de fluoreto de lítio. MATERIAIS E MÉTODOS: As simulações dos espectros secundários da fonte clínica de cobalto-60 foram realizadas com o código Monte Carlo PENELOPE, em diversas profundidades na água. Medidas experimentais de dose profunda foram obtidas com dosímetros termoluminescentes e câmara de ionização em condições de referência em radioterapia. Os fatores de correção para os dosímetros termoluminescentes foram obtidos através da razão entre as absorções relativas ao espectro de baixa energia e ao espectro total. RESULTADOS: A análise espectral em profundidade revelou a existência de espectros secundários de baixa energia responsáveis por uma parcela significativa da deposição de dose. Foram observadas discrepâncias de 3,2% nas doses medidas experimentalmente com a câmara de ionização e com os dosímetros termoluminescentes. O uso dos fatores de correção nessas medidas permitiu diminuir a discrepância entre as doses absorvidas para, no máximo, 0,3%. CONCLUSÃO: Os espectros simulados permitem o cálculo de fatores de correção para as leituras de dosímetros termoluminescentes utilizados em medidas de dose profunda, contribuindo para a redução das incertezas associadas ao controle de qualidade de feixes clínicos em radioterapia.