911 resultados para mRNA hepatic expression


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Liver-specific and nonliver-specific methionine adenosyltransferases (MATs) are products of two genes, MAT1A and MAT2A, respectively, that catalyze the formation of S-adenosylmethionine (AdoMet), the principal biological methyl donor. Mature liver expresses MAT1A, whereas MAT2A is expressed in extrahepatic tissues and is induced during liver growth and dedifferentiation. To examine the influence of MAT1A on hepatic growth, we studied the effects of a targeted disruption of the murine MAT1A gene. MAT1A mRNA and protein levels were absent in homozygous knockout mice. At 3 months, plasma methionine level increased 776% in knockouts. Hepatic AdoMet and glutathione levels were reduced by 74 and 40%, respectively, whereas S-adenosylhomocysteine, methylthioadenosine, and global DNA methylation were unchanged. The body weight of 3-month-old knockout mice was unchanged from wild-type littermates, but the liver weight was increased 40%. The Affymetrix genechip system and Northern and Western blot analyses were used to analyze differential expression of genes. The expression of many acute phase-response and inflammatory markers, including orosomucoid, amyloid, metallothionein, Fas antigen, and growth-related genes, including early growth response 1 and proliferating cell nuclear antigen, is increased in the knockout animal. At 3 months, knockout mice are more susceptible to choline-deficient diet-induced fatty liver. At 8 months, knockout mice developed spontaneous macrovesicular steatosis and predominantly periportal mononuclear cell infiltration. Thus, absence of MAT1A resulted in a liver that is more susceptible to injury, expresses markers of an acute phase response, and displays increased proliferation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is well established that the expression of Bacillus thuringiensis (B.t.) toxin genes in higher plants is severely limited at the mRNA level, but the cause remains controversial. Elucidating whether mRNA accumulation is limited transcriptionally or posttranscriptionally could contribute to effective gene design as well as provide insights about endogenous plant gene-expression mechanisms. To resolve this controversy, we compared the expression of an A/U-rich wild-type cryIA(c) gene and a G/C-rich synthetic cryIA(c) B.t.-toxin gene under the control of identical 5′ and 3′ flanking sequences. Transcriptional activities of the genes were equal as determined by nuclear run-on transcription assays. In contrast, mRNA half-life measurements demonstrated directly that the wild-type transcript was markedly less stable than that encoded by the synthetic gene. Sequences that limit mRNA accumulation were located at more than one site within the coding region, and some appeared to be recognized in Arabidopsis but not in tobacco (Nicotiana tabacum). These results support previous observations that some A/U-rich sequences can contribute to mRNA instability in plants. Our studies further indicate that some of these sequences may be differentially recognized in tobacco cells and Arabidopsis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nitrate reductase (NR) activity increased up to 14-fold in response to treatment of Arabidopsis thaliana seedlings with the cytokinin benzyladenine. NR induction was observed in seedlings germinated directly on cytokinin-containing medium, seedlings transferred to cytokinin medium, and seedlings grown in soil in which cytokinin was applied directly to the leaves. About the same level of induction was seen in both wild-type and Nia2-deletion mutants, indicating that increased NR activity is related to the expression of the minor NR gene, Nia1. The steady-state Nia1 mRNA level was increased severalfold in both wild-type and mutant seedlings after benzyladenine treatment. Transcript levels of the Nia2 gene, which is responsible for 90% of the NR activity in developing wild-type seedlings, did not show any changes upon cytokinin treatment. Nuclear run-on assays demonstrated that Nia1 gene transcription increased dramatically after cytokinin treatment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Peroxisome proliferators induce stearoyl-CoA desaturase activity (EC 1.14.99.5) in liver [Kawashima, Y., Hanioka, N., Matsumura, M. & Kozuka, H. (1983) Biochim. Biophys. Acta 752, 259-264]. We analyzed the changes in stearoyl-CoA desaturase 1 (SCD1) mRNA to further define the molecular mechanism for the induction of stearoyl-CoA desaturase by peroxisome proliferators. SCD1 mRNA was analyzed from the livers of BALB/c mice that had been fed diets supplemented with clofibrate or gemfibrozil. Clofibrate was found to induce liver SCD1 mRNA levels 3-fold within 6 hr to a maximum of 22-fold in 30 hr. Gemfibrozil administration resulted in a similar induction pattern. This induction is primarily due to an increase in transcription of the SCD1 gene, as shown by nuclear run-on transcription assays and DNA deletion analysis of transfected SCD1-chloramphenicol acetyltransferase fusion genes. The cis-linked response element for peroxisome proliferator-activated receptor (PPAR) was localized to an AGGTCA consensus sequence between base pairs -664 to -642 of the SCD1 promoter. Clofibrate-mediated induction of SCD1 mRNA was shown to be independent of polyunsaturated fatty acids, with peroxisome proliferators and arachidonic acid having opposite effects on SCD1 mRNA levels. Additionally, the activation of SCD1 mRNA by clofibrate was inhibited 77% by cycloheximide administration. Levels of liver beta-actin and albumin mRNAs were unchanged by these dietary manipulations. Our data show that hepatic SCD1 gene expression is regulated by PPARs and suggest that peroxisome proliferators and poly-unsaturated fatty acids act through distinct mechanisms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study evaluated hippocampal inhibitory function and the level of expression of gamma-aminobutyric acid type A (GABAA) receptor mRNA in an in vivo model of epilepsy. Chronic recurrent limbic seizures were induced in rats using injections of pilocarpine. Electrophysiological studies performed on hippocampal slices prepared from control and epileptic animals 1 to 2 months after pilocarpine injections demonstrated a significant hyperexcitability in the epileptic animals. Reduced levels of mRNA expression for the alpha 2 and alpha 5 subunits of the GABAA receptors were evident in the CA1, CA2, and CA3 regions of the hippocampus of epileptic animals. No decrease in mRNA encoding alpha 1, beta 2, or gamma 2 GABAA receptor subunits was observed. In addition, no change in the mRNA levels of alpha CaM kinase II was seen. Selective decreases in mRNA expression did not correlate with neuronal cell loss. The results indicate that selective, long-lasting reduction of GABAA subunit mRNA expression and increased excitability, possibly reflecting loss of GABAergic inhibition, occur in an in vivo model of partial complex epilepsy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The threonyl-tRNA synthetase gene, thrS, is a member of a family of Gram-positive genes that are induced following starvation for the corresponding amino acid by a transcriptional antitermination mechanism involving the cognate uncharged tRNA. Here we show that an additional level of complexity exists in the control of the thrS gene with the mapping of an mRNA processing site just upstream of the transcription terminator in the thrS leader region. The processed RNA is significantly more stable than the full-length transcript. Under nonstarvation conditions, or following starvation for an amino acid other than threonine, the full-length thrS mRNA is more abundant than the processed transcript. However, following starvation for threonine, the thrS mRNA exists primarily in its cleaved form. This can partly be attributed to an increased processing efficiency following threonine starvation, and partly to a further, nonspecific increase in the stability of the processed transcript under starvation conditions. The increased stability of the processed RNA contributes significantly to the levels of functional RNA observed under threonine starvation conditions, previously attributed solely to antitermination. Finally, we show that processing is likely to occur upstream of the terminator in the leader regions of at least four other genes of this family, suggesting a widespread conservation of this phenomenon in their control.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Genetic code differences prevent expression of nuclear genes within Saccharomyces cerevisiae mitochondria. To bridge this gap a synthetic gene, ARG8m, designed to specify an arginine biosynthetic enzyme when expressed inside mitochondria, has been inserted into yeast mtDNA in place of the COX3 structural gene. This mitochondrial cox3::ARG8m gene fully complements a nuclear arg8 deletion at the level of cell growth, and it is dependent for expression upon nuclear genes that encode subunits of the COX3 mRNA-specific translational activator. Thus, cox3::ARG8m serves as a mitochondrial reporter gene. Measurement of cox3::ARG8m expression at the levels of steady-state protein and enzymatic activity reveals that glucose repression operates within mitochondria. The levels of this reporter vary among strains whose nuclear genotypes lead to under- and overexpression of translational activator subunits, in particular Pet494p, indicating that mRNA-specific translational activation is a rate-limiting step in this organellar system. Whereas the steady-state level of cox3::ARG8m mRNA was also glucose repressed in an otherwise wild-type strain, absence of translational activation led to essentially repressed mRNA levels even under derepressing growth conditions. Thus, the mRNA is stabilized by translational activation, and variation in its level may be largely due to modulation of translation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Infectious human respiratory syncytial virus (RSV) was produced by the intracellular coexpression of five plasmid-borne cDNAs. One cDNA encoded a complete positive-sense version of the RSV genome (corresponding to the replicative intermediate RNA or antigenome), and each of the other four encoded a separate RSV protein, namely, the major nucleocapsid N protein, the nucleocapsid P phosphoprotein, the major polymerase L protein, or the protein from the 5' proximal open reading frame of the M2 mRNA [M2(ORF1)]. RSV was not produced if any of the five plasmids was omitted. The requirement for the M2(ORF1) protein is consistent with its recent identification as a transcription elongation factor and confirms its importance for RSV gene expression. It should thus be possible to introduce defined changes into infectious RSV. This should be useful for basic studies of RSV molecular biology and pathogenesis; in addition, there are immediate applications to the development of live attenuated vaccine strains bearing predetermined defined attenuating mutations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mechanisms by which stress and anti-depressants exert opposite effects on the course of clinical depression are not known. However, potential candidates might include neurotrophic factors that regulate the development, plasticity, and survival of neurons. To explore this hypothesis, we examined the effects of stress and antidepressants on neurotrophin expression in the locus coeruleus (LC), which modulates many of the behavioral and physiological responses to stress and has been implicated in mood disorders. Using in situ hybridization, we demonstrate that neurotrophin 3 (NT-3) is expressed in noradrenergic neurons of the LC. Recurrent, but not acute, immobilization stress increased NT-3 mRNA levels in the LC. In contrast, chronic treatment with antidepressants decreased NT-3 mRNA levels. The effect occurred in response to antidepressants that blocked norepinephrine uptake, whereas serotonin-specific reuptake inhibitors did not alter NT-3 levels. Electroconvulsive seizures also decreased NT-3 expression in the LC as well as the hippocampus. Ntrk3 (neurotrophic tyrosine kinase receptor type 3; formerly TrkC), the receptor for NT-3, is expressed in the LC, but its mRNA levels did not change with stress or antidepressant treatments. Because, NT-3 is known to be trophic for LC neurons, our results raise the possibility that some of the effects of stress and antidepressants on LC function and plasticity could be mediated through NT-3. Moreover, the coexpression of NT-3 and its receptor in the LC suggests the potential for autocrine mechanisms of action.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We demonstrate that the cauliflower mosaic virus (CaMV) gene VI product can transactivate the expression of a reporter gene in bakers' yeast, Saccharomyces cerevisiae. The gene VI coding sequence was placed under the control of the galactose-inducible promoter GAL1, which is presented in the yeast shuttle vector pYES2, to create plasmid JS169. We also created a chloramphenicol acetyltransferase (CAT) reporter plasmid, JS161, by inserting the CAT reporter gene in-frame into CaMV gene II and subsequently cloning the entire CaMV genome into the yeast vector pRS314. When JS161 was transformed into yeast and subsequently assayed for CAT activity, only a very low level of CAT activity was detected in cellular extracts. To investigate whether the CaMV gene VI product would mediate an increase in CAT activity, we cotransformed yeast with JS169 and JS161. Upon induction with galactose, we found that CAT activity in yeast transformed with JS161 and JS169 was about 19 times higher than the level in the transformants that contained only JS161. CAT activity was dependent on the presence of the gene VI protein, because essentially no CAT activity was detected in yeast cells grown in the presence of glucose, which represses expression from the GAL1 promoter. RNase protection assays showed that the gene VI product had no effect on transcription from the 35S RNA promoter, demonstrating that regulation was occurring at the translation level. This yeast system will prove useful for understanding how the gene VI product of CaMV mediates the translation of genes present on a eukaryotic polycistronic mRNA.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

[Arg8]vasopressin (AVP) stimulates adrenocorticotropic hormone release from the anterior pituitary by acting on the V1b AVP receptor. This receptor can be distinguished from the vascular/hepatic V1a and renal V2 AVP receptors by its differential binding affinities for structural analogous of AVP. Recent studies have shown that the cloned V1a and V2 receptors are structurally related. We have isolated a clone encoding the V1b receptor from a rat pituitary cDNA library using polymerase chain reaction (PCR)-based methodology. The rat V1b receptor is a protein of 421 amino acids that has 37-50% identity with the V1a and V2 receptors. Homology is particularly high in the seven putative membrane-spanning domains of these guanine nucleotide-binding protein-coupled receptors. Expression of the recombinant receptor in mammalian cells shows the same binding specificity for AVP agonists and antagonists as the rat pituitary V1b receptor. AVP-stimulated phosphotidylinositol hydrolysis and intracellular Ca2+ mobilization in Chinese hamster ovary or COS-7 cells expressing the cloned receptor suggest second messenger signaling through phospholipase C. RNA blot analysis, reverse transcription PCR, and in situ hybridization studies reveal that V1b receptor mRNA is expressed in the majority of pituitary corticotropes as well as in multiple brain regions and a number of peripheral tissues, including kidney, thymus, heart, lung, spleen, uterus, and breast. Thus, the V1b receptor must mediate some of the diverse biological effects of AVP in the pituitary as well as other organs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have studied the effects of food restriction (FR) and substitution of fish oil (FO; omega 3) for corn oil (CO; omega 6) on breast tumor incidence and survival in mouse mammary tumor virus/v-Ha-ras transgenic (Onco) mice. The diets were as follows: group 1, 5% (wt/wt) CO fed ad libitum (AL); group 2, 5% CO, restricted calories (40% fewer calories than AL; FR); group 3, 20% CO fed AL; and group 4, 20% FO fed AL. After 3 years, 40% of FR Onco (group 2) mice were alive, whereas there were no survivors in the other three groups. Similarly, tumor incidence was reduced to 27% (5 out of 18) in FR animals (group 2), whereas it was 83% (11 out of 13) in group 1 mice, 89% (16 out of 18) in group 3 mice, and 71% (10 out of 14) in group 4 mice. These protective effects of FR on survival and tumor incidence were paralleled by higher expression of the tumor suppressor gene p53 (wild type) and free-radical scavenging enzymes (catalase and superoxide dismutase) in breast tumors. Immunoblotting showed less ras gene product, p21, and increased p53 levels in the tumors of FR mice. In addition, FR decreased RNA levels of c-erbB-2, interleukin 6, and the transgene v-Ha-ras in tumors. In contrast, analysis of hepatic mRNA from tumor-bearing FR mice revealed higher expression of catalase, glutathione peroxidase, and superoxide dismutase. Survival and tumor incidence were not influenced significantly by dietary supplementation with FO in place of CO. Taken together, our studies suggest that moderate restriction of energy intake significantly inhibited the development of mammary tumors and altered expression of cytokines, oncogenes, and free-radical scavenging enzymes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A 5.2-kb mRNA band that contains estrogen receptor (ER) sequence and exhibits sex- and tissue-specific expression has been identified in rat pituitary via Northern analysis; this band is composed of at least two distinctive ER mRNA isoforms. This mRNA is expressed in high levels in female pituitary but is absent in male pituitary and uterus, whereas the mRNA encoding the full-length receptor (6.2 kb) is expressed in all the aforementioned tissues. Estradiol treatment potently induces the expression of the 5.2-kb band in the male pituitary. Oligonucleotide hybridization and ribonuclease-protection experiments indicate that the pituitary ER variant is missing exons 1-4. Two corresponding cDNA clones, truncated estrogen receptor product 1 and 2 (TERP-1 and TERP-2), were isolated by using the anchored PCR. Both sequences contain a 31-bp segment of specific sequence upstream of exon 5; TERP-2, however, contains an additional 66 bp of specific sequence between the 31-bp segment and exon 5. On Northern analysis, probes complementary to the 31-bp segment of specific sequence hybridize only to the 5.2-kb band. Immunoblotting identified several proteins in rat pituitary that could represent the translation products of these or related transcripts. In summary, several ER isoforms have been identified that exhibit both tissue-specific expression and marked estrogen regulation and differ from full-length receptor by virtue of sequence upstream of the exon 4/5 boundary. Physiologically, the putative proteins encoded by these or similar isoforms might be important modulators of the tissue- and promoter-specific effects of estradiol.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The influence of a synthetic retroviral peptide, CKS-17, on T helper type 1 (Th1)- or Th2-related cytokines was investigated in human blood mononuclear cells. Cells were stimulated with staphylococcal enterotoxin A, anti-CD3 plus anti-CD28 monoclonal antibodies, or lipopolysaccharide to induce cytokine mRNA. mRNA was detected by a reverse transcription-polymerase chain reaction or Northern blot analysis. CKS-17 down-regulated stimulant-induced mRNA accumulation for interferon gamma (IFN-gamma), interleukin (IL)-2, and p40 heavy and p35 light chains of IL-12, a cytokine that mediates development of Th1 response. CKS-17 up-regulated stimulant-induced mRNA accumulation of IL-10 and did not suppress Th2-related cytokine (IL-4, IL-5, IL-6, or IL-13) mRNA expression. A reverse sequence of CKS-17 peptide, used as a control, showed no such action. Anti-human IL-10 monoclonal antibody blocked ability of CKS-17 to inhibit mRNA accumulation for IFN-gamma but not the CKS-17 suppressive activity of IL-12 p40 heavy chain mRNA. Thus, CKS-17-mediated suppression of IFN-gamma mRNA expression is dependent upon augmentation of IL-10 production by CKS-17. This conserved component of several retroviral envelope proteins, CKS-17, may act as an immunomodulatory epitope responsible for cytokine dysregulation that leads to suppression of cellular immunity.