897 resultados para lifetime of isomer
Resumo:
This research addressed the question of life satisfaction for retired and employed women with long-term employment in a typically female occupational setting. Questions of how women's retirement is related to life satisfaction have been largely neglected because of cultural assumptions about the relative unimportance of the work role in women's lives. It is generally believed that the major source of satisfaction for women is in traditional family roles. Therefore, it follows that retirement from work is not experienced as a loss for women.^ The actual consequences of women's retirement have not been examined systematically. Descriptive data about their lives are inadequate. It is not known what patterns and resources result from a lifetime of work for women.^ The objectives of the study were to test assumptions from role and continuity theory regarding life satisfaction for retired women and women employed late in life and to describe the retirement and work experiences of the women.^ Life satisfaction was measured by the Neugarten, Havighurst and Tobin Life Satisfaction Index. Perceptions of appropriate roles for females and males were assessed through an attitudinal sex-role instrument. A composite index, derived from perceptions of health, social participation, and income at two time periods, measured level of continuity. These indices and demographic information, attitudinal items about work and retirement, and social network data comprised the mailed, self-administered survey and the personal interviews.^ The study population included 91 retired and 53 employed women, 55 years or older with a minimum of 20 years continuous employment, who were enrolled in the pension program of a large retail store.^ The retired women's perceptions of their health and social participation were more positive than the employed women's. Traditional retired women demonstrated higher life satisfaction than nontraditional retired women. Both retired and employed women who perceived continuity in life patterns scored statistically higher on life satisfaction than women who perceived discontinuity. Financial planning was the area of greatest retirement concern for retired and employed women.^
Resumo:
$\beta$-adrenergic receptor-mediated activation of adenylate cyclase exhibits an agonist-specific separation between the dose/response curve (characterized by the EC$\sb{50}$) and the dose/binding curve (characterized by the K$\sb{\rm d}$). Cyclase activity can be near-maximal when receptor occupancy is quite low (EC$\sb{50}$ $\ll$ K$\sb{\rm d}$). This separation between the binding and response curves can be explained by the assumption that the rate of cyclase activation is proportional to the concentration of agonist-bound receptors, since the receptor is mobile and can activate more than one cyclase (the Collision Coupling Model of Tolkovsky and Levitzki). Here it is established that agonist binding frequency plays an additional role in adenylate cyclase activation in S49 murine lymphoma cells. Using epinephrine (EC$\sb{50}$ = 10 nM, K$\sb{\rm d}$ = 2 $\mu$M), the rate of cyclase activation decreased by 80% when a small (1.5%) receptor occupancy was restricted (by addition of the antagonist propranolol) to a small number (1.5%) of receptors rather than being proportionally distributed among the cell's entire population of receptors. Thus adenylate cyclase activity is not proportional to receptor occupancy in all circumstances. Collisions between receptor and cyclase pairs apparently occur a number of times in rapid sequence (an encounter); the high binding frequency of epinephrine ensures that discontiguous regions of the cell surface experience some period of agonist-bound receptor activity per small unit time minimizing "wasted" collisions between activated cyclase and bound receptor within an encounter. A contribution of agonist binding frequency to activation is thus possible when: (1) the mean lifetime of the agonist-receptor complex is shorter than the mean encounter time, and (2) the absolute efficiency (intrinsic ability to promote cyclase activation per collision) of the agonist-receptor complex is high. These conclusions are supported by experiments using agonists of different efficiencies and binding frequencies. These results are formalized in the Encounter Coupling Model of adenylate cyclase activation, which takes into explicit account the agonist binding frequency, agonist affinity for the $\beta$-adrenergic receptor, agonist efficiency, encounter frequency and the encounter time between receptor and cyclase. ^
Resumo:
In this study we report on new non-sea salt calcium (nssCa2+, mineral dust proxy) and sea salt sodium (ssNa+, sea ice proxy) records along the East Antarctic Talos Dome deep ice core in centennial resolution reaching back 150 thousand years (ka) before present. During glacial conditions nssCa2+ fluxes in Talos Dome are strongly related to temperature as has been observed before in other deep Antarctic ice core records, and has been associated with synchronous changes in the main source region (southern South America) during climate variations in the last glacial. However, during warmer climate conditions Talos Dome mineral dust input is clearly elevated compared to other records mainly due to the contribution of additional local dust sources in the Ross Sea area. Based on a simple transport model, we compare nssCa2+ fluxes of different East Antarctic ice cores. From this multi-site comparison we conclude that changes in transport efficiency or atmospheric lifetime of dust particles do have a minor effect compared to source strength changes on the large-scale concentration changes observed in Antarctic ice cores during climate variations of the past 150 ka. Our transport model applied on ice core data is further validated by climate model data. The availability of multiple East Antarctic nssCa2+ records also allows for a revision of a former estimate on the atmospheric CO2 sensitivity to reduced dust induced iron fertilisation in the Southern Ocean during the transition from the Last Glacial Maximum to the Holocene (T1). While a former estimate based on the EPICA Dome C (EDC) record only suggested 20 ppm, we find that reduced dust induced iron fertilisation in the Southern Ocean may be responsible for up to 40 ppm of the total atmospheric CO2 increase during T1. During the last interglacial, ssNa+ levels of EDC and EPICA Dronning Maud Land (EDML) are only half of the Holocene levels, in line with higher temperatures during that period, indicating much reduced sea ice extent in the Atlantic as well as the Indian Ocean sector of the Southern Ocean. In contrast, Holocene ssNa+ flux in Talos Dome is about the same as during the last interglacial, indicating that there was similar ice cover present in the Ross Sea area during MIS 5.5 as during the Holocene.
Resumo:
We report new data on oxygen isotopes in marine sulfate (delta18O[SO4]), measured in marine barite (BaSO4), over the Cenozoic. The delta18O[SO4] varies by 6x over the Cenozoic, with major peaks 3, 15, 30 and 55 Ma. The delta18O[SO4] does not co-vary with the delta18O[SO4], emphasizing that different processes control the oxygen and sulfur isotopic composition of sulfate. This indicates that temporal changes in the delta18O[SO4] over the Cenozoic must reflect changes in the isotopic fractionation associated with the sulfide reoxidation pathway. This suggests that variations in the aerial extent of different types of organic-rich sediments may have a significant impact on the biogeochemical sulfur cycle and emphasizes that the sulfur cycle is less sensitive to net organic carbon burial than to changes in the conditions of that organic carbon burial. The delta18O[SO4] also does not co-vary with the d18O measured in benthic foraminifera, emphasizing that oxygen isotopes in water and sulfate remain out of equilibrium over the lifetime of sulfate in the ocean. A simple box model was used to explore dynamics of the marine sulfur cycle with respect to both oxygen and sulfur isotopes over the Cenozoic. We interpret variability in the delta18O[SO4] to reflect changes in the aerial distribution of conditions within organic-rich sediments, from periods with more localized, organic-rich sediments, to periods with more diffuse organic carbon burial. While these changes may not impact the net organic carbon burial, they will greatly affect the way that sulfur is processed within organic-rich sediments, impacting the sulfide reoxidation pathway and thus the delta18O[SO4]. Our qualitative interpretation of the record suggests that sulfate concentrations were probably lower earlier in the Cenozoic.
Resumo:
By the nuclear bomb tests during the 1950s and early 1960s, the radiocarbon content of the atmospheric CO, on the Southern Hemisphere rose within a few years from 98 to 162% of the standard recent value and then dropped to 122% (at the end of 1984). This rapid fluctuation was used to determine the lifetime of five species of lichens collected in the beginning of 1985 in the maritime Antarctic. Under the assumption that Lichens assimilate each year carbon at the same rate and that carbon once fixed at least in main branches never will be exchanged later on. The age of mature thalli of Caioplaco regalis, Ramalino tetebrata and Ustiea antarctica was determined to 32 years, while U, aurantiaco-atra and Himantormia lugubris gave an age of ca. 38 years and ca. 60 years, respectively.
Resumo:
Fe–Cr based alloys are the leading structural material candidates in the design of next generation reactors due to their high resistance to swelling and corrosion. Despite these good properties there are others, such as embrittlement, which require a higher level of understanding in order to improve aspects such as safety or lifetime of the reactors. The addition of Cr improves the behavior of the steels under irradiation, but not in a monotonic way. Therefore, understanding the changes in the Fe–Cr based alloys microstructure induced by irradiation and the role played by the alloying element (Cr) is needed in order to predict the response of these materials under the extreme conditions they are going to support. In this work we perform a study of the effect of Cr concentration in a bcc Fe–Cr matrix on formation and binding energies of vacancy clusters up to 5 units. The dependence of the calculated formation and binding energy is investigated with two empirical interatomic potentials specially developed to study radiation damage in Fe–Cr alloys. Results are very similar for both potentials showing an increase of the defect stability with the cluster size and no real dependence on Cr concentration for the binding energy.
Resumo:
This contribution deals with the question, what makes cities sustainable and integrative, and suggests an approach for "liveable cities of tomorrow" designed to sustain mobility. The liveable city of tomorrow needs to meet both ecological and social requirements in an integrative approach. To design urban patterns appropriate or “sustainable mobility” based on a concept of mobility defined as the number of accessible destinations (different to that for “fossil mobility” defined as the ability to cover distances) is a key element of such an approach. Considering the limited reserves of fossil fuels and the long lifetime of the built structure, mobility needs to rely on modes independent of fossil fuels (public transport and pedestrians) to make it sustainable and the urban pattern needs to be developed appropriately for these modes. Crucial for the success of public transport is the location of buildings within the catchment area of stops. An attractive urban environment for pedestrians is characterised by short distances in a compact settlement with appropriate/qualified urban density and mixed land use as well as by attractive public space. This, complemented by an integrative urban development on the quarter level including neighbourhood management with a broad spectrum of activity areas (social infrastructure, integration of diverse social and ethnic groups, health promotion, community living, etc.), results in increased liveability. The role of information technology in this context is to support a sustainable use of the built structures by organisational instruments. Sustainable and liveable communities offer many benefits for health, safety and well-being of their inhabitants.
Resumo:
In this study, we present a structural and optoelectronic characterization of high dose Ti implanted Si subsequently pulsed-laser melted (Ti supersaturated Si). Time-of-flight secondary ion mass spectrometry analysis reveals that the theoretical Mott limit has been surpassed after the laser process and transmission electron microscopy images show a good lattice reconstruction. Optical characterization shows strong sub-band gap absorption related to the high Ti concentration. Photoconductivity measurements show that Ti supersaturated Si presents spectral response orders of magnitude higher than unimplanted Si at energies below the band gap. We conclude that the observed below band gap photoconductivity cannot be attributed to structural defects produced by the fabrication processes and suggest that both absorption coefficient of the new material and lifetime of photoexcited carriers have been enhanced due to the presence of a high Ti concentration. This remarkable result proves that Ti supersaturated Si is a promising material for both infrared detectors and high efficiency photovoltaic devices.
Resumo:
We derive a semi-analytic formulation that enables the study of the long-term dynamics of fast-rotating inert tethers around planetary satellites. These equations take into account the coupling between the translational and rotational motion, which has a non-negligible impact on the dynamics, as the orbital motion of the tether center of mass strongly depends on the tether plane of rotation and its spin rate, and vice-versa. We use these governing equations to explore the effects of this coupling on the dynamics, the lifetime of frozen orbits and the precession of the plane of rotation of the tether.
Resumo:
Las redes del futuro, incluyendo las redes de próxima generación, tienen entre sus objetivos de diseño el control sobre el consumo de energía y la conectividad de la red. Estos objetivos cobran especial relevancia cuando hablamos de redes con capacidades limitadas, como es el caso de las redes de sensores inalámbricos (WSN por sus siglas en inglés). Estas redes se caracterizan por estar formadas por dispositivos de baja o muy baja capacidad de proceso y por depender de baterías para su alimentación. Por tanto la optimización de la energía consumida se hace muy importante. Son muchas las propuestas que se han realizado para optimizar el consumo de energía en este tipo de redes. Quizás las más conocidas son las que se basan en la planificación coordinada de periodos de actividad e inactividad, siendo una de las formas más eficaces para extender el tiempo de vida de las baterías. La propuesta que se presenta en este trabajo se basa en el control de la conectividad mediante una aproximación probabilística. La idea subyacente es que se puede esperar que una red mantenga la conectividad si todos sus nodos tienen al menos un número determinado de vecinos. Empleando algún mecanismo que mantenga ese número, se espera que se pueda mantener la conectividad con un consumo energético menor que si se empleara una potencia de transmisión fija que garantizara una conectividad similar. Para que el mecanismo sea eficiente debe tener la menor huella posible en los dispositivos donde se vaya a emplear. Por eso se propone el uso de un sistema auto-adaptativo basado en control mediante lógica borrosa. En este trabajo se ha diseñado e implementado el sistema descrito, y se ha probado en un despliegue real confirmando que efectivamente existen configuraciones posibles que permiten mantener la conectividad ahorrando energía con respecto al uso de una potencia de transmisión fija. ABSTRACT. Among the design goals for future networks, including next generation networks, we can find the energy consumption and the connectivity. These two goals are of special relevance when dealing with constrained networks. That is the case of Wireless Sensors Networks (WSN). These networks consist of devices with low or very low processing capabilities. They also depend on batteries for their operation. Thus energy optimization becomes a very important issue. Several proposals have been made for optimizing the energy consumption in this kind of networks. Perhaps the best known are those based on the coordinated planning of active and sleep intervals. They are indeed one of the most effective ways to extend the lifetime of the batteries. The proposal presented in this work uses a probabilistic approach to control the connectivity of a network. The underlying idea is that it is highly probable that the network will have a good connectivity if all the nodes have a minimum number of neighbors. By using some mechanism to reach that number, we hope that we can preserve the connectivity with a lower energy consumption compared to the required one if a fixed transmission power is used to achieve a similar connectivity. The mechanism must have the smallest footprint possible on the devices being used in order to be efficient. Therefore a fuzzy control based self-adaptive system is proposed. This work includes the design and implementation of the described system. It also has been validated in a real scenario deployment. We have obtained results supporting that there exist configurations where it is possible to get a good connectivity saving energy when compared to the use of a fixed transmission power for a similar connectivity.
Resumo:
The actin cytoskeleton plays a key role in the deformability of the cell and in mechanosensing. Here we analyze the contributions of three major actin cross-linking proteins, myosin II, a-actinin and filamin, to cell deformability, by using micropipette aspiration of Dictyostelium cells. We examine the applicability of three simple mechanical models: for small deformation, linear viscoelasticity and drop of liquid with a tense cortex; and for large deformation, a Newtonian viscous fluid. For these models, we have derived linearized equations and we provide a novel, straightforward methodology to analyze the experiments. This methodology allowed us to differentiate the effects of the cross-linking proteins in the different regimes of deformation. Our results confirm some previous observations and suggest important relations between the molecular characteristics of the actin-binding proteins and the cell behavior: the effect of myosin is explained in terms of the relation between the lifetime of the bond to actin and the resistive force; the presence of a-actinin obstructs the deformation of the cytoskeleton, presumably mainly due to the higher molecular stiffness and to the lower dissociation rate constants; and filamin contributes critically to the global connectivity of the network, possibly by rapidly turning over crosslinks during the remodeling of the cytoskeletal network, thanks to the higher rate constants, flexibility and larger size. The results suggest a sophisticated relationship between the expression levels of actinbinding proteins, deformability and mechanosensing.
Resumo:
Leukocytes roll along the endothelium of postcapillary venules in response to inflammatory signals. Rolling under the hydrodynamic drag forces of blood flow is mediated by the interaction between selectins and their ligands across the leukocyte and endothelial cell surfaces. Here we present force-spectroscopy experiments on single complexes of P-selectin and P-selectin glycoprotein ligand-1 by atomic force microscopy to determine the intrinsic molecular properties of this dynamic adhesion process. By modeling intermolecular and intramolecular forces as well as the adhesion probability in atomic force microscopy experiments we gain information on rupture forces, elasticity, and kinetics of the P-selectin/P-selectin glycoprotein ligand-1 interaction. The complexes are able to withstand forces up to 165 pN and show a chain-like elasticity with a molecular spring constant of 5.3 pN nm−1 and a persistence length of 0.35 nm. The dissociation constant (off-rate) varies over three orders of magnitude from 0.02 s−1 under zero force up to 15 s−1 under external applied forces. Rupture force and lifetime of the complexes are not constant, but directly depend on the applied force per unit time, which is a product of the intrinsic molecular elasticity and the external pulling velocity. The high strength of binding combined with force-dependent rate constants and high molecular elasticity are tailored to support physiological leukocyte rolling.
Resumo:
Single light-harvesting complexes LH-2 from Rhodopseudomonas acidophila were immobilized on various charged surfaces under physiological conditions. Polarized light experiments showed that the complexes were situated on the surface as nearly upright cylinders. Their fluorescence lifetimes and photobleaching properties were obtained by using a confocal fluorescence microscope with picosecond time resolution. Initially all molecules fluoresced with a lifetime of 1 ± 0.2 ns, similar to the bulk value. The photobleaching of one bacteriochlorophyll molecule from the 18-member assembly caused the fluorescence to switch off completely, because of trapping of the mobile excitations by energy transfer. This process was linear in light intensity. On continued irradiation the fluorescence often reappeared, but all molecules did not show the same behavior. Some LH-2 complexes displayed a variation of their quantum yields that was attributed to photoinduced confinement of the excited states and thereby a diminution of the superradiance. Others showed much shorter lifetimes caused by excitation energy traps that are only ≈3% efficient. On repeated excitation some molecules entered a noisy state where the fluorescence switched on and off with a correlation time of ≈0.1 s. About 490 molecules were examined.
Resumo:
Central to swarm formation in migratory locusts is a crowding-induced change from a “solitarious” to a “gregarious” phenotype. This change can occur within the lifetime of a single locust and accrues across generations. It represents an extreme example of phenotypic plasticity. We present computer simulations and a laboratory experiment that show how differences in resource distributions, conspicuous only at small spatial scales, can have significant effects on phase change at the population level; local spatial concentration of resource induces gregarization. Simulations also show that populations inhabiting a locally concentrated resource tend to change phase rapidly and synchronously in response to altered population densities. Our results show why information about the structure of resource at small spatial scales should become key components in monitoring and control strategies.
Resumo:
Regulators of G protein signaling (RGS) proteins limit the lifetime of activated (GTP-bound) heterotrimeric G protein α subunits by acting as GTPase-activating proteins (GAPs). Mutation of two residues in RGS4, which, based on the crystal structure of RGS4 complexed with Giα1-GDP-AlF4−, directly contact Giα1 (N88 and L159), essentially abolished RGS4 binding and GAP activity. Mutation of another contact residue (S164) partially inhibited both binding and GAP activity. Two other mutations, one of a contact residue (R167M/A) and the other an adjacent residue (F168A), also significantly reduced RGS4 binding to Giα1-GDP-AlF4−, but in addition redirected RGS4 binding toward the GTPγS-bound form. These two mutant proteins had severely impaired GAP activity, but in contrast to the others behaved as RGS antagonists in GAP and in vivo signaling assays. Overall, these results are consistent with the hypothesis that the predominant role of RGS proteins is to stabilize the transition state for GTP hydrolysis. In addition, mutant RGS proteins can be created with an altered binding preference for the Giα-GTP conformation, suggesting that efficient RGS antagonists can be developed.