918 resultados para least squares method
Resumo:
A model based on chemical structure was developed for the accurate prediction of octanol/water partition coefficient (K OW) of polychlorinated biphenyls (PCBs), which are molecules of environmental interest. Partial least squares (PLS) was used to build the regression model. Topological indices were used as molecular descriptors. Variable selection was performed by Hierarchical Cluster Analysis (HCA). In the modeling process, the experimental K OW measured for 30 PCBs by thin-layer chromatography - retention time (TLC-RT) has been used. The developed model (Q² = 0,990 and r² = 0,994) was used to estimate the log K OW values for the 179 PCB congeners whose K OW data have not yet been measured by TLC-RT method. The results showed that topological indices can be very useful to predict the K OW.
Resumo:
A simple method was proposed for determination of paracetamol and ibuprofen in tablets, based on UV measurements and partial least squares. The procedure was performed at pH 10.5, in the concentration ranges 3.00-15.00 µg ml-1 (paracetamol) and 2.40-12.00 µg ml-1 (ibuprofen). The model was able to predict paracetamol and ibuprofen in synthetic mixtures with root mean squares errors of prediction of 0.12 and 0.17 µg ml-1, respectively. Figures of merit (sensitivity, limit of detection and precision) were also estimated. The results achieved for the determination of these drugs in pharmaceutical formulations were in agreement with label claims and verified by HPLC.
Resumo:
Least-squares support vector machines (LS-SVM) were used as an alternative multivariate calibration method for the simultaneous quantification of some common adulterants found in powdered milk samples, using near-infrared spectroscopy. Excellent models were built using LS-SVM for determining R², RMSECV and RMSEP values. LS-SVMs show superior performance for quantifying starch, whey and sucrose in powdered milk samples in relation to PLSR. This study shows that it is possible to determine precisely the amount of one and two common adulterants simultaneously in powdered milk samples using LS-SVM and NIR spectra.
Resumo:
Recent years have produced great advances in the instrumentation technology. The amount of available data has been increasing due to the simplicity, speed and accuracy of current spectroscopic instruments. Most of these data are, however, meaningless without a proper analysis. This has been one of the reasons for the overgrowing success of multivariate handling of such data. Industrial data is commonly not designed data; in other words, there is no exact experimental design, but rather the data have been collected as a routine procedure during an industrial process. This makes certain demands on the multivariate modeling, as the selection of samples and variables can have an enormous effect. Common approaches in the modeling of industrial data are PCA (principal component analysis) and PLS (projection to latent structures or partial least squares) but there are also other methods that should be considered. The more advanced methods include multi block modeling and nonlinear modeling. In this thesis it is shown that the results of data analysis vary according to the modeling approach used, thus making the selection of the modeling approach dependent on the purpose of the model. If the model is intended to provide accurate predictions, the approach should be different than in the case where the purpose of modeling is mostly to obtain information about the variables and the process. For industrial applicability it is essential that the methods are robust and sufficiently simple to apply. In this way the methods and the results can be compared and an approach selected that is suitable for the intended purpose. Differences in data analysis methods are compared with data from different fields of industry in this thesis. In the first two papers, the multi block method is considered for data originating from the oil and fertilizer industries. The results are compared to those from PLS and priority PLS. The third paper considers applicability of multivariate models to process control for a reactive crystallization process. In the fourth paper, nonlinear modeling is examined with a data set from the oil industry. The response has a nonlinear relation to the descriptor matrix, and the results are compared between linear modeling, polynomial PLS and nonlinear modeling using nonlinear score vectors.
Resumo:
A new analytical method was developed to non-destructively determine pH and degree of polymerisation (DP) of cellulose in fibres in 19th 20th century painting canvases, and to identify the fibre type: cotton, linen, hemp, ramie or jute. The method is based on NIR spectroscopy and multivariate data analysis, while for calibration and validation a reference collection of 199 historical canvas samples was used. The reference collection was analysed destructively using microscopy and chemical analytical methods. Partial least squares regression was used to build quantitative methods to determine pH and DP, and linear discriminant analysis was used to determine the fibre type. To interpret the obtained chemical information, an expert assessment panel developed a categorisation system to discriminate between canvases that may not be fit to withstand excessive mechanical stress, e.g. transportation. The limiting DP for this category was found to be 600. With the new method and categorisation system, canvases of 12 Dalí paintings from the Fundació Gala-Salvador Dalí (Figueres, Spain) were non-destructively analysed for pH, DP and fibre type, and their fitness determined, which informs conservation recommendations. The study demonstrates that collection-wide canvas condition surveys can be performed efficiently and non-destructively, which could significantly improve collection management.
Resumo:
Diffuse reflectance near-infrared (DR-NIR) spectroscopy associated with partial least squares (PLS) multivariate calibration is proposed for a direct, non-destructive, determination of total nitrogen in wheat leaves. The procedure was developed for an Analytical Instrumental Analysis course, carried out at the Institute of Chemistry of the State University of Campinas. The DR-NIR results are in good agreement with those obtained by the Kjeldhal standard procedure, with a relative error of less than ± 3% and the method may be used for teaching purposes as well as for routine analysis.
Resumo:
The kinetics of biodegradation by the fungus Ganoderma sp of textile dyes Yellow, Blue and Red Procion were studied in effluents using UV-Vis spectroscopy, Partial Least Squares Regression (PLS) and univariate analysis. The kinetic of the reactions were founded intermediate between first and second orders and the rate constants were calculated. The biodegradation after 72 h at 28 ºC were 33.6, 43.5 and 57.7% for the dyes Yellow, Blue and Red Procion, respectively. The quantitative analysis of the effluent by HPLC method can not be used without previous separation.
Resumo:
A multivariate spectrophotometric method was developed for analysis of kojic acid/hydroquinone associations in skin whitening cosmetics. The method is based on the reaction between kojic acid and Fe3+ and on the reduction of Fe3+ by hydroquinone and further complexation of Fe2+ with 1,10-phenanthroline. The multivariate model was developed by Partial Least Squares Regression (PLSR), using 25 synthetic mixtures and mean-centered spectral data (350-380 nm). The use of 3 (kojic acid) and 2 (hydroquinone) latent variables permits the observation of mean errors of about 5% in the external validation phase.
Resumo:
This study developed and validated a method for moisture determination in artisanal Minas cheese, using near-infrared spectroscopy and partial-least-squares. The model robustness was assured by broad sample diversity, real conditions of routine analysis, variable selection, outlier detection and analytical validation. The model was built from 28.5-55.5% w/w, with a root-mean-square-error-of-prediction of 1.6%. After its adoption, the method stability was confirmed over a period of two years through the development of a control chart. Besides this specific method, the present study sought to provide an example multivariate metrological methodology with potential for application in several areas, including new aspects, such as more stringent evaluation of the linearity of multivariate methods.
Resumo:
We propose an analytical method based on fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy to detect the adulteration of petrodiesel and petrodiesel/palm biodiesel blends with African crude palm oil. The infrared spectral fingerprints from the sample analysis were used to perform principal components analysis (PCA) and to construct a prediction model using partial least squares (PLS) regression. The PCA results separated the samples into three groups, allowing identification of those subjected to adulteration with palm oil. The obtained model shows a good predictive capacity for determining the concentration of palm oil in petrodiesel/biodiesel blends. Advantages of the proposed method include cost-effectiveness and speed; it is also environmentally friendly.
Resumo:
Multivariate Curve Resolution with Alternating Least Squares (MCR-ALS) is a resolution method that has been efficiently applied in many different fields, such as process analysis, environmental data and, more recently, hyperspectral image analysis. When applied to second order data (or to three-way data) arrays, recovery of the underlying basis vectors in both measurement orders (i.e. signal and concentration orders) from the data matrix can be achieved without ambiguities if the trilinear model constraint is considered during the ALS optimization. This work summarizes different protocols of MCR-ALS application, presenting a case study: near-infrared image spectroscopy.
Resumo:
A simple and sensitive spectrophotometric method is proposed for the simultaneous determination of protocatechuic acid and protocatechuic aldehyde. The method is based on the difference in the kinetic rates of the reactions of analytes with [Ag(NH3)2]+ in the presence of polyvinylpyrrolidone to produce silver nanoparticles. The data obtained were processed by chemometric methods using principal component analysis artificial neural network and partial least squares. Excellent linearity was obtained in the concentration ranges of 1.23-58.56 µg mL-1 and 0.08-30.39 µg mL-1 for PAC and PAH, respectively. The limits of detection for PAC and PAH were 0.039 and 0.025 µg mL-1, respectively.
Resumo:
Electrodegradation of atrazine in water was performed using homemade (PA and PB) and purchased (PC) boron-doped diamond anodes. The degradation was monitored off-line by analyzing total organic carbon and high performance liquid chromatography with diode array detector (HPLC-DAD) and at-line by UV spectroscopy. The spectra were recorded every 2 min. The rank deficiency problem was resolved by assembling an augmented column-wise matrix. HPLC was employed to separate the original and byproducts degradation components. Aiming the same goal, multivariate curve resolution - alternating least squares (MCR-ALS) was applied to resolve the UV spectroscopic data. Comparison between HPLC and MCR-ALS separations is presented. By using MCR-ALS the spectra of atrazine and two byproducts were successfully resolved and the resulted concentration profiles properly represented the system studied. The ALS explained variance (R2) for PA, PB and PC was equal to 99.99% for all of them and the lack of fit for PA, PB and PC were 0.39, 0.34 and 0.54 respectively. The correlation (R) between the recovered and pure spectra were calculate for each electrodegradation, validating the MCR-ALS results. The average R was equal to 0.997. The spectral and concentration profiles described with this new approach are in agreement with HPLC-DAD results. The proposed method is an alternative to classical analyses for monitoring of the degradation process, mainly due to the simplicity, fast results and economy.
Resumo:
The calyxes of Hibiscus sabdariffa are used in traditional medicine around the world. However, quality assurance protocols and chemical variability have not been previously analyzed. In the present study, chemical characterization of a set of samples of H. sabdariffa calyxes commercialized in Colombia was accomplished with the aim to explore the chemical variability among them. Chemometrics-based analyses on the data obtained from the HPLC-UV-DAD-derived profiles were then performed. Thus, the pre-processed single-wavelength data were subjected to principal component analysis (PCA). The PCA-derived results evidenced different groups which were well-correlated to the corresponding total phenolic and total anthocyanin contents. Multi-wavelength chromatographic (HPLC-UV-DAD surfaces) data were additionally examined via parallel factor analysis (PARAFAC) as data reduction method and the obtained loadings were subsequently submitted to PCA and orthogonal partial least squares discriminant analysis (OPLS-DA). Results were thus consistent with those from single-wavelength data. PCA loadings were employed to determine those chemical components responsible for the data variance and OPLS-DA model, constructed from PARAFAC loadings, and indicated differentiation according total anthocyanin contents among samples. The present chemometric analysis therefore demonstrated to be an excellent tool for differentiation of H. sabdariffacalyxes according to their chemical composition.
Resumo:
The aim of this present work was to provide a more fast, simple and less expensive to analyze sulfur content in diesel samples than by the standard methods currently used. Thus, samples of diesel fuel with sulfur concentrations varying from 400 and 2500 mgkg-1 were analyzed by two methodologies: X-ray fluorescence, according to ASTM D4294 and by Fourier transform infrared spectrometry (FTIR). The spectral data obtained from FTIR were used to build multivariate calibration models by partial least squares (PLS). Four models were built in three different ways: 1) a model using the full spectra (665 to 4000 cm-1), 2) two models using some specific spectrum regions and 3) a model with variable selected by classic method of variable selection stepwise. The model obtained by variable selection stepwise and the model built with region spectra between 665 and 856 cm-1 and 1145 and 2717 cm-1 showed better results in the determination of sulfur content.