732 resultados para intracardiac nerves


Relevância:

10.00% 10.00%

Publicador:

Resumo:

AbstractMyotonic dystrophy type 1 (DM1), also known as Steinert's disease, is an inherited autosomal dominant disease. DM1 is characterized by myotonia, muscular weakness and atrophy, but it has a multisystemic phenotype. The genetic basis of the disease is the abnormal expansion of CTG repeats in the 3' untranslated region of the DM protein kinase (DMPK) gene on chromosome 19. The size of the expansion correlates to the severity of the disease and the age of onset.Respiratory problems have long been recognized to be a major feature of the disease and are the main factor contributing to mortality ; however the mechanisms are only partly known. The aim of our study is to investigate whether respiratory failure results only from the involvement of the dystrophic process at the level of the respiratory muscles or comes also from abnormalities in the neuronal network that generates and controls the respiratory rhythm. The generation of valid transgenic mice displaying the human DM1 phenotype by the group of Dr. Gourdon provided us a useful tool to analyze the brain stem respiratory neurons, spinal phrenic motoneurons and phrenic nerves. We examined therefore these structures in transgenic mice carrying 350-500 CTGs and displaying a mild form of the disease (DM1 mice). The morphological and morphometric analysis of diaphragm muscle sections revealed a denervation of the end-plates (EPs), characterized by a decrease in size and shape complexity of EPs and a reduction in the density of acetylcholine receptors (AChRs). Also a strong and significant reduction in the number of phrenic unmyelinated fibers was detected, but not in the myelinated fibers. In addition, no pathological changes were detected in the cervical motoneurons and medullary respiratory centers (Panaite et al., 2008). These results suggest that the breathing rhythm is probably not affected in mice expressing a mild form of DM1, but rather the transmission of action potentials at the level of diaphragm NMJs is deficient.Because size of the mutation increases over generations, new transgenic mice were obtained from the mice with 350-500 CTGs, resulting from a large increase of CTG repeat in successive generations, these mice carry more than 1300 CTGs (DMSXL) and display a severe DM1 phenotype (Gomes-Pereira et al., 2007). Before we study the mechanism underlying the respiratory failure in DMSXL mice, we analyzed the peripheral nervous system (PNS) in these mice by electrophysiological, histological and morphometric methods. Our results provide strong evidence that DMSXL mice have motor neuropathy (Panaite et al., 2010, submitted). Therefore the DMSXL mice expressing severe DM1 features represent for us a good tool to investigate, in the future, the physiological, structural and molecular alterations underlying respiratory failure in DM1. Understanding the mechanism of respiratory deficiency will help to better target the therapy of these problems in DM1 patients. In addition our results may, in the future, orientate pharmaceutical and clinical research towards possible development of therapy against respiratory deficits associated with the DM1.RésuméLa dystrophic myotonique type 1 (DM1), aussi dénommée maladie de Steinert, est une maladie héréditaire autosomique dominante. Elle est caractérisée par une myotonie, une faiblesse musculaire avec atrophie et se manifeste aussi par un phénotype multisystémique. La base génétique de la maladie est une expansion anormale de répétitions CTG dans une région non traduite en 3' du gène de la DM protéine kinase (DMPK) sur le chromosome 19. La taille de l'expansion est corrélée avec la sévérité et l'âge d'apparition de DM1.Bien que les problèmes respiratoires soient reconnus depuis longtemps comme une complication de la maladie et soient le principal facteur contribuant à la mortalité, les mécanismes en sont partiellement connus. Le but de notre étude est d'examiner si l'insuffisance respiratoire de la DM1 est dû au processus dystrophique au niveau des muscles respiratoires ou si elle est entraînée aussi par des anomalies dans le réseau neuronal qui génère et contrôle le rythme respiratoire. La production par le groupe du Dr. Gourdon de souris transgéniques de DM1, manifestant le phénotype de DM1 humaine, nous a fourni un outil pour analyser les nerfs phréniques, les neurones des centres respiratoires du tronc cérébral et les motoneurones phréniques. Par conséquence, nous avons examiné ces structures chez des souris transgéniques portant 350-500 CTG et affichant une forme légère de la maladie (souris DM1). L'analyse morphologique et morphométrique des sections du diaphragme a révélé une dénervation des plaques motrices et une diminution de la taille et de la complexité de la membrane postsynaptîque, ainsi qu'une réduction de la densité des récepteurs à l'acétylcholine. Nous avons aussi détecté une réduction significative du nombre de fibres nerveuses non myélinisées mais pas des fibres myélinisées. Par ailleurs, aucun changement pathologique n'a été détecté pour les neurones moteurs médullaires cervicaux et centres respiratoires du tronc cérébral (Panaite et al., 2008). Ces résultats suggèrent que le iythme respiratoire n'est probablement pas affecté chez les souris manifestant une forme légère du DM1, mais plutôt que la transmission des potentiels d'action au niveau des plaques motrices du diaphragme est déficiente.Comme la taille du mutation augmente au fil des générations, de nouvelles souris transgéniques ont été générés par le groupe Gourdon; ces souris ont plus de 1300 CTG (DMSXL) et manifestent un phénotype sévère du DM1 (Gomes-Pereira et al., 2007). Avant d'étudier le mécanisme sous-jacent de l'insuffisance respiratoire chez les souris DMSXL, nous avons analysé le système nerveux périphérique chez ces souris par des méthodes électrophysiologiques, histologiques et morphométriques. Nos résultats fournissent des preuves solides que les souris DMSXL manifestent une neuropathie motrice (Panaite et al., 2010, soumis). Par conséquent, les souris DMSXL représentent pour nous un bon outil pour étudier, à l'avenir, les modifications physiologiques, morphologiques et moléculaires qui sous-tendent l'insuffisance respiratoire du DM1. La connaissance du mécanisme de déficience respiratoire en DM1 aidera à mieux cibler le traitement de ces problèmes aux patients. De plus, nos résultats pourront, à l'avenir, orienter la recherche pharmaceutique et clinique vers le développement de thérapie contre le déficit respiratoire associé à DM1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The central and peripheral nervous systems are involved in multiple age-dependent neurological deficits that are often attributed to alterations in function of myelinating glial cells. However, the molecular events that underlie the age-related decline of glial cell function are unknown. We used Schwann cells as a model to study biological processes affected in glial cells by aging. We comprehensively profiled gene expression of the Schwann cellrich mouse sciatic nerve throughout life, from day of birth until senescence (840 days of age). We combined the aging data with the microarray transcriptional data obtained using nerves isolated from Schwann cell-specific neuropathy-inducing mutants MPZCre/+/Lpin1fE2−3/fE2−3 , MPZCre/+/ScapfE1/fE1 and Pmp22-null mice. The majority of age related transcripts were also affected in the analyzed mouse models of neuropathy (54.4%) and in development (59.5%) indicating a high level of overlapping in implicated molecular pathways. We observed that compared to peripheral nerve development, dynamically changing expression profiles in aging have opposite (anticorrelated) orientation while they copy the orientation of transcriptional changes observed in analyzed neuropathy models. Subsequent clustering and biological annotation of dynamically changing transcripts revealed that the processes most significantly deregulated in aging include inflammatory/immune response and lipid biosynthesis/metabolism. Importantly, the changes in these pathways were also observed in myelinated oligodendrocyte-rich optic nerves of aged mice, albeit with lower magnitude. This observation suggests that similar biological processes are affected in aging glial cells in central and peripheral nervous systems, however with different dynamics. Our data, which provide the first comprehensive comparison of molecular changes in glial cells in three distinct biological conditions comprising development, aging and disease, provide not only a new inside into the molecular alterations underlying neural system aging but also identify target pathways for potential therapeutic approaches to prevent or delay complications associated with age-related and inherited forms of neuropathies. *Current address: Department of Physiology, UCSF, San Francisco, CA, USA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While the morphological and electrophysiological changes underlying diabetic peripheral neuropathy (DPN) are relatively well described, the involved molecular mechanisms remain poorly understood. In this study, we investigated whether phenotypic changes associated with early DPN are correlated with transcriptional alterations in the neuronal (dorsal root ganglia [DRG]) or the glial (endoneurium) compartments of the peripheral nerve. We used Ins2(Akita/+) mice to study transcriptional changes underlying the onset of DPN in type 1 diabetes mellitus (DM). Weight, blood glucose and motor nerve conduction velocity (MNCV) were measured in Ins2(Akita/+) and control mice during the first three months of life in order to determine the onset of DPN. Based on this phenotypic characterization, we performed gene expression profiling using sciatic nerve endoneurium and DRG isolated from pre-symptomatic and early symptomatic Ins2(Akita/+) mice and sex-matched littermate controls. Our phenotypic analysis of Ins2(Akita/+) mice revealed that DPN, as measured by reduced MNCV, is detectable in affected animals already one week after the onset of hyperglycemia. Surprisingly, the onset of DPN was not associated with any major persistent changes in gene expression profiles in either sciatic nerve endoneurium or DRG. Our data thus demonstrated that the transcriptional programs in both endoneurial and neuronal compartments of the peripheral nerve are relatively resistant to the onset of hyperglycemia and hypoinsulinemia suggesting that either minor transcriptional alterations or changes on the proteomic level are responsible for the functional deficits associated with the onset of DPN in type 1 DM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Infective endocarditis (IE) is lethal if not aggressively treated with antibiotics alone or in combination with surgery. The epidemiology of this condition has substantially changed over the past four decades, especially in industrialized countries. Once a disease that predominantly affected young adults with previously well-identified valve disease--mostly chronic rheumatic heart disease--IE now tends to affect older patients and new at-risk groups, including intravenous-drug users, patients with intracardiac devices, and patients exposed to healthcare-associated bacteremia. As a result, skin organisms (for example, Staphylococcus spp.) are now reported as the pathogen in these populations more often than oral streptococci, which still prevail in the community and in native-valve IE. Moreover, progress in molecular diagnostics has helped to improve the diagnosis of poorly cultivable pathogens, such as Bartonella spp. and Tropheryma whipplei, which are responsible for blood-culture-negative IE more often than expected. Epidemiological data indicate that IE mostly occurs independently of medico-surgical procedures, and that circumstantial antibiotic prophylaxis is likely to protect only a minute proportion of individuals at risk. Therefore, new strategies to prevent IE--including improvement of dental hygiene, decontamination of carriers of Staphylococcus aureus, vaccination, and, possibly, antiplatelet therapy--must be explored.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work proposes the creation of a bioinspired electronic white cane for blind people using the whiskers principle for short-range navigation and exploration. Whiskers are coarse hairs of an animal's face that tells the animal that it has touched something using the nerves of the skin. In this work the raw data acquired from a low-size terrestrial LIDAR and a tri-axial accelerometer is converted into tactile information using several electromagnetic devices configured as a tactile belt. The LIDAR and the accelerometer are attached to the user’s forearm and connected with a wire to the control unit placed on the belt. Early validation experiments carried out in the laboratory are promising in terms of usability and description of the environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The central and peripheral nervous systems are involved in multiple agedependent neurological deficits that are often attributed to alterations in function of myelinating glial cells. However, the molecular events that underlie the age-related decline of glial cell function are unknown. We used Schwann cells as a model to study biological processes affected in glial cells by aging. We comprehensively profiled gene expression of the Schwann cell-rich mouse sciatic nerve throughout life, from day of birth until senescence (840 days of age). We combined the aging data with the microarray transcriptional data obtained using nerves isolated from Schwann cell-specific neuropathy-inducing mutants MPZCre/þ/Lpin1fE2-3/fE2-3, MPZCre/þ/ScapfE1/fE1 and Pmp22-null mice. A majority of age related transcripts were also affected in the analyzed mouse models of neuropathy (54.4%) and in development (59.5%) indicating a high level of overlapping in implicated molecular pathways. We observed that compared to peripheral nerve development, dynamically changing expression profiles in aging have opposite (anticorrelated) orientation while they copy the orientation of transcriptional changes observed in analyzed neuropathy models. Subsequent clustering and biological annotation of dynamically changing transcripts revealed that the processes most significantly deregulated in aging include inflammatory/ immune response and lipid biosynthesis/metabolism. Importantly, the changes in these pathways were also observed in myelinated oligodendrocyte- rich optic nerves of aged mice, albeit with lower magnitude. This observation suggests that similar biological processes are affected in aging glial cells in central and peripheral nervous systems, however with different dynamics. Our data, which provide the first comprehensive comparison of molecular changes in glial cells in three distinct biological conditions comprising development, aging and disease, provide not only a new inside into the molecular alterations underlying neural system aging but also identify target pathways for potential therapeutical approaches to prevent or delay complications associated with age-related and inherited forms of neuropathies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of the present study was longitudinal evaluation of the volumetric tumor response and functional results after Gamma Knife radiosurgery of vestibular schwannomas, performed according to the modern standards of treatment. From October 2003 to September 2007, 133 consecutive patients with vestibular schwannomas were treated according to the concept of robotic Gamma Knife microradiosurgery, which is based on precise irradiation of the lesion, sparing adjacent structures, and delivery of the high radiation energy to the target. Multiple small-sized isocenters located within the border of the neoplasm were applied. The mean marginal dose was 11.5 Gy (range, 11-12 Gy). In total, 126 cases with a minimum posttreatment follow-up of 2 years (range, 2-7 years; median, 4 years) were analyzed. Temporary enlargement was noted in 25 % of tumors at 6 months after radiosurgery. At 3 years of follow-up, tumor shrinkage, stabilization, and increase in volume were marked in 73 %, 23 %, and 4 % of cases, respectively. All progressing lesions spontaneously stabilized later on and did not require additional management. In 3 % of patients, transitory impairment of the facial nerve function was marked; however, neither its permanent dysfunction nor trigeminal neuropathy attributed to radiosurgery was noted. Impairment of hearing compared to its pretreatment level was revealed in 4 %, 12 %, 13 %, and 16 % of patients at 6 months, 1 year, 2 years, and 3 years after radiosurgery, respectively, and this trend was statistically significant (P = 0.0042). Overall, 77 % of patients with serviceable hearing before treatment preserved it 3 years thereafter. In conclusion, modern Gamma Knife radiosurgery provides effective and safe management of vestibular schwannomas. Nevertheless, possible temporary tumor enlargement, delay of its growth arrest, transient dysfunction of the cranial nerves, and gradual deterioration of hearing after irradiation should be always taken into consideration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examines the proportions of regenerative and collateral sprouting to the skin after peripheral nerve injury. Methods: In the first experimental paradigm, primary afferent neurones were pre-labelled with Diamidino Yellow (DY), injected in digit 3, followed by sciatic nerve section and repair. After three months of regeneration, digit 3 was re-injected with Fast Blue (FB) to label regernating cells. Fluoro-Gold (FG) was applied to the femoral (FEM) and musculocutaneous (MC) nervers four days later to quantify their contribution to the innveration. In the second experimental paradigm, sciatic nerve was first sectioned and repaired. Three months later, the sciatic was resected, and digit 3 injected with FB. After four more days, FEM and MC were resected and FG injected in all digits. Results: Neurones in dorsal root ganglion (DRG) L5 had a higher rate of correct reinnervation of digit 3 (44-72%) than neurones in DRG L4 (14-44%). Like in control cases, only occasional axons were traced from the FEM and MC. In the second experiment, only occasional labelled neurones appeared. Conclusions: The results indicate differences in the capacity for correct peripheral sensory reinnvervation between segmental levels and that in this model collateral sprouting was practically non-existent compared to regenerative sprouting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study was performed to investigate the possibility of 'aberrant' innervation of the tips of the hindlimb digits in the rat, i.e., from other sources than the femoral and the main sciatic branches (tibial, peroneal, sural). Cutaneous injections of fluorescent tracers in the digits were combined with either selective nerve transections to restrict afferent routes followed by detection of labeled neurons in dorsal root ganglia (DRGs), or by a delayed application of a second tracer to afferent nerves under study to detect double labeled neurons in DRGs. The results show that the tips of the digits were represented in DRGs L3-6. The femoral nerve afferents from digits 1 and 2 projected primarily to DRG L3 and to a smaller extent to DRG L4. A small number of neurons from primarily medial digits 1 and 2, but also from lateral digits 3-5, were found to project to DRGs L4 and L5 via a proximal branch that leaves the sciatic nerve near the sciatic notch and runs distally in the posterior part of the thigh, here called the musculocutaneous nerve of the hindlimb. We also have some evidence indicating innervation of the tips of the digits from the posterior cutaneous nerve of the thigh. Aberrant innervation such as that described here might contribute to remaining and perhaps abnormal sensibility after nerve injury and is of interest for the interpretation of results in experimental studies of collateral and regenerative sprouting after such injury

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examined the effect of anterior ischemic optic neuropathy (AION) on the activity of intrinsically photosensitive retinal ganglion cells (ipRGCs) using the pupil as proxy. Eighteen patients with AION (10 unilateral, 8 bilateral) and 29 age-matched control subjects underwent chromatic pupillometry. Red and blue light stimuli increasing in 0.5 log steps were presented to each eye independently under conditions of dark and light adaptation. The recorded pupil contraction was plotted against stimulus intensity to generate scotopic and photopic response curves for assessment of synaptically-mediated ipRGC activity. Bright blue light stimuli presented monocularly and binocularly were used for melanopsin activation. The post-stimulus pupil size (PSPS) at the 6th second following stimulus offset was the marker of intrinsic ipRGC activity. Finally, questionnaires were administered to assess the influence of ipRGCs on sleep. The pupil response and PSPS to all monocularly-presented light stimuli were impaired in AION eyes, indicating ipRGC dysfunction. To binocular light stimulation, the PSPS of AION patients was similar to that of controls. There was no difference in the sleep habits of the two groups. Thus after ischemic injury to one or both optic nerves, the summated intrinsic ipRGC activity is preserved when both eyes receive adequate light exposure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The topographical distribution of sciatic and femoral nerve sensory neuronal somata in the L4 dorsal root ganglion of the adult rat was mapped after retrograde tracing with one or two of the dyes Fast Blue, Fluoro-Gold, or Diamidino Yellow. The tracers were applied to the proximal transected end of either nerve alone, or from both nerves in the same animal using separate tracers. Three-dimensional reconstructions of the distribution of labelled neurones were made from serial sections of the L4 dorsal root ganglion which is the only ganglion that these two nerves share. The results showed that with little overlap, femoral nerve neurones distribute dorsally and rostrally whereas sciatic nerve neurones distribute medially and ventrally. This finding indicates the existence of a somatotopical organisation for the representation of different peripheral nerves in dorsal root ganglia of adult animals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Cranial nerve schwannomas are radiologically characterized by nodular cranial nerve enhancement on magnetic resonance imaging (MRI). Schwannomas typically present with gradually progressive symptoms, but isolated reports have suggested that schwannomas may cause fluctuating symptoms as well. METHODS: This is a report of ten cases of presumed cranial nerve schwannoma that presented with transient or recurring ocular motor nerve deficits. RESULTS: Schwannomas of the third, fourth, and fifth nerves resulted in fluctuating deficits of all 3 ocular motor nerves. Persistent nodular cranial nerve enhancement was present on sequential MRI studies. Several episodes of transient oculomotor (III) deficts were associated with headaches, mimicking ophthalmoplegic migraine. CONCLUSIONS: Cranial nerve schwannomas may result in relapsing and remitting cranial nerve symptoms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study was designed to investigate the efficacy of the fluorescent dyes Fast Blue (FB), Fluoro-Gold (FG), and Diamidino Yellow (DY) for retrograde tracing of lumbar dorsal root ganglia after their subcutaneous injection into different hindlimb digits. Injection of equal volumes (0.5 mu l) of 5% FB or 2% FG resulted in similar mean numbers of sensory neurones labelled by each tracer. Injection of equal volumes (0.5 mu l) of FB or FG in a single digit followed 10 days later by a second injection of the same volume of 5% DY into the same digit resulted in similar mean numbers of labelled sensory neurones for each of the three tracers. Furthermore, on average, 75% of all the FB-labelled cells and 74% of all FC-labelled cells also contained DY. Repeating the same experiment with an increased volume of DY (1.5 mu l) resulted in an increase in the mean number of double-labelled profiles to 82 and 84% for FB and FG, respectively. The results show that FB, FG and DY label similar numbers of cutaneous afferents and that a high level of double labelling may be obtained after sequential injections in digits. These properties make them suitable candidates in investigations where a combination of tracers with similar labelling efficacies is needed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Selective reinnervation of peripheral targets after nerve injury might be assessed by injecting a first tracer in a target before nerve injury to label the original neuronal population, and applying a second tracer after the regeneration period to label the regenerated population. However, altered uptake of tracer, fading, and cell death may interfere with the results. Furthermore, if the first tracer injected remains in the target tissue, available for 're-uptake' by misdirected regenerating axons, which originally innervated another region, then the identification of the original population would be confused. With the aim of studying this problem, the sciatic nerve of adult rats was sectioned and sutured. After 3 days, to allow the distal axon to degenerate avoiding immediate retrograde transport, one of the dyes: Fast Blue (FB), Fluoro-Gold (FG) or Diamidino Yellow (DY), was injected into the tibial branch of the sciatic nerve, or in the skin of one of the denervated digits. Rats survived 2-3 months. The results showed labelled dorsal root ganglion (DRG) cells and motoneurones, indicating that late re-uptake of a first tracer occurs. This phenomenon must be considered when the model of sequential labelling is used for studying the accuracy of peripheral reinnervation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Moebius syndrome is a rare congenital disorder characterized by unilateral or bilateral involvement of the sixth and seventh cranial nerves, resulting in a lack of facial expression and eye movements. These patients suffer a series of oral manifestations that may complicate their dental treatment, such as facial and tongue muscle weakness, uncontrolled salivation secondary to defi cient lip sealing, micrognathia, microstomia, bifi d uvula, gothic and fi ssured palate, fi ssured tongue, and glossoptosis. The underlying etiology remains unclear, though vascular problems during embryogenesis appear to be involved. Clinical case: We report the case of a woman with Moebius syndrome and total edentulism. Eight years ago she underwent complete oral rehabilitation with the placement of two implants in each dental arch. Discussion: Moebius syndrome has still an unknown etiology, although it is related to disorders during pregnancy. This kind of patient can be rehabilitated using oral implants.