991 resultados para interference pattern
Resumo:
While wireless LAN (WLAN) is very popular now a days, its performance deteriorates in the presence of other signals like Bluetooth (BT) signal that operate in the same band as WLAN. Present interference mitigation techniques in WLAN due to BT cancel interference in WLAN sub carrier where BT has hopped but do not cancel interference in the adjacent sub carriers. In this paper BT interference signal in all the OFDM sub carriers is estimated. That is, leakage of BT in other sub carriers including the sub carriers in which it has hopped is also measured. BT signals are estimated using the training signals of OFDM system. Simulation results in AWGN noise show that proposed algorithm agrees closely with theoretical results.
Resumo:
One of the major sources of interference for WLANs operating in 2.4GHz unlicensed ISM is Bluetooth (BT). Though OFDM based WLAN's have features like strong immunity to multipath channel effects, its performance detoriates severely whenever there is BT operating nearby. Even for high SIR (Signal to Interference Ratio), performance does not improve much because WLAN is not able to estimate correctly all its channel parameters in presence of BT interference. So, in this paper, the authors propose an algorithm for estimating BT interference and equivalent channel filter tap values.
Resumo:
Wetlands are the most productive and biologically diverse but very fragile ecosystems. They are vulnerable to even small changes in their biotic and abiotic factors. In recent years, there has been concern over the continuous degradation of wetlands due to unplanned developmental activities. This necessitates inventorying, mapping, and monitoring of wetlands to implement sustainable management approaches. The principal objective of this work is to evolve a strategy to identify and monitor wetlands using temporal remote sensing (RS) data. Pattern classifiers were used to extract wetlands automatically from NIR bands of MODIS, Landsat MSS and Landsat TM remote sensing data. MODIS provided data for 2002 to 2007, while for 1973 and 1992 IR Bands of Landsat MSS and TM (79m and 30m spatial resolution) data were used. Principal components of IR bands of MODIS (250 m) were fused with IRS LISS-3 NIR (23.5 m). To extract wetlands, statistical unsupervised learning of IR bands for the respective temporal data was performed using Bayesian approach based on prior probability, mean and covariance. Temporal analysis of wetlands indicates a sharp decline of 58% in Greater Bangalore attributing to intense urbanization processes, evident from a 466% increase in built-up area from 1973 to 2007.
Resumo:
Urbanisation is the increase in the population of cities in proportion to the region's rural population. Urbanisation in India is very rapid with urban population growing at around 2.3 percent per annum. Urban sprawl refers to the dispersed development along highways or surrounding the city and in rural countryside with implications such as loss of agricultural land, open space and ecologically sensitive habitats. Sprawl is thus a pattern and pace of land use in which the rate of land consumed for urban purposes exceeds the rate of population growth resulting in an inefficient and consumptive use of land and its associated resources. This unprecedented urbanisation trend due to burgeoning population has posed serious challenges to the decision makers in the city planning and management process involving plethora of issues like infrastructure development, traffic congestion, and basic amenities (electricity, water, and sanitation), etc. In this context, to aid the decision makers in following the holistic approaches in the city and urban planning, the pattern, analysis, visualization of urban growth and its impact on natural resources has gained importance. This communication, analyses the urbanisation pattern and trends using temporal remote sensing data based on supervised learning using maximum likelihood estimation of multivariate normal density parameters and Bayesian classification approach. The technique is implemented for Greater Bangalore – one of the fastest growing city in the World, with Landsat data of 1973, 1992 and 2000, IRS LISS-3 data of 1999, 2006 and MODIS data of 2002 and 2007. The study shows that there has been a growth of 466% in urban areas of Greater Bangalore across 35 years (1973 to 2007). The study unravels the pattern of growth in Greater Bangalore and its implication on local climate and also on the natural resources, necessitating appropriate strategies for the sustainable management.
Resumo:
In this paper, we propose and analyze a novel idea of performing interference cancellation (IC) in a distributed/cooperative manner, with a motivation to provide multiuser detection (MUD) benefit to nodes that have only a single user detection capability. In the proposed distributed interference cancellation (DIC) scheme, during phase-1 of transmission, an MUD capable cooperating relay node estimates all the sender nodes' bits through multistage interference cancellation. These estimated bits are then sent by the relay node on orthogonal tones in phase-2 of transmission. The destination nodes receive these bit estimates and use them for interference estimation/cancellation, thus achieving IC benefit in a distributed manner. For this DIC scheme, we analytically derive an exact expression for the bit error rate (BER) in a basic five-node network (two source-destination node pairs and a cooperating relay node) on AWGN channels. Analytical BER results are shown to match with simulation results. For more general system scenarios, including more than two source-destination pairs and fading channels without and with space-time coding, we present simulation results to establish the potential for improved performance in the proposed distributed approach to interference cancellation. We also present a linear version of the proposed DIC.
Resumo:
Accurate system planning and performance evaluation requires knowledge of the joint impact of scheduling, interference, and fading. However, current analyses either require costly numerical simulations or make simplifying assumptions that limit the applicability of the results. In this paper, we derive analytical expressions for the spectral efficiency of cellular systems that use either the channel-unaware but fair round robin scheduler or the greedy, channel-aware but unfair maximum signal to interference ratio scheduler. As is the case in real deployments, non-identical co-channel interference at each user, both Rayleigh fading and lognormal shadowing, and limited modulation constellation sizes are accounted for in the analysis. We show that using a simple moment generating function-based lognormal approximation technique and an accurate Gaussian-Q function approximation leads to results that match simulations well. These results are more accurate than erstwhile results that instead used the moment-matching Fenton-Wilkinson approximation method and bounds on the Q function. The spectral efficiency of cellular systems is strongly influenced by the channel scheduler and the small constellation size that is typically used in third generation cellular systems.
Resumo:
Cooperative transmission by base stations can significantly improve the spectral efficiency of multiuser, multi-cell multiple input multiple output systems. We show that in such systems the multiuser interference is asynchronous by nature, even when perfect timing-advance mechanisms ensure that the desired signal components arrive synchronously. We establish an accurate mathematical model for the asynchronism, and use it to show that the asynchronism leads to a significant performance degradation of existing linear preceding designs that assumed synchronous interference. We consider three different previously proposed precoding designs, and show how to modify them to effectively mitigate asynchronous interference.
Resumo:
This paper considers the degrees of freedom (DOF) for a K user multiple-input multiple-output (MIMO) M x N interference channel using interference alignment (IA). A new performance metric for evaluating the efficacy of IA algorithms is proposed, which measures the extent to which the desired signal dimensionality is preserved after zero-forcing the interference at the receiver. Inspired by the metric, two algorithms are proposed for designing the linear precoders and receive filters for IA in the constant MIMO interference channel with a finite number of symbol extensions. The first algorithm uses an eigenbeamforming method to align sub-streams of the interference to reduce the dimensionality of the interference at all the receivers. The second algorithm is iterative, and is based on minimizing the interference leakage power while preserving the dimensionality of the desired signal space at the intended receivers. The improved performance of the algorithms is illustrated by comparing them with existing algorithms for IA using Monte Carlo simulations.
Resumo:
Low complexity decoders called Partial Interference Cancellation (PIC) and PIC with Successive Interference Cancellation (PIC-SIC), which include the Zero Forcing (ZF) and ZF-SIC receivers as special cases, were given by Guo and Xia along with sufficient conditions for a Space-Time Block Code (STBC) to achieve full diversity with PIC/PIC-SIC decoding for point-to-point MIMO channels. In Part-I of this two part series of papers, we give new conditions for an STBC to achieve full diversity with PIC and PIC-SIC decoders, which are equivalent to Guo and Xia's conditions, but are much easier to check. We then show that PIC and PIC-SIC decoders are capable of achieving the full cooperative diversity available in wireless relay networks and give sufficient conditions for a Distributed Space-Time Block Code (DSTBC) to achieve full diversity with PIC and PIC-SIC decoders. In Part-II, we construct new low complexity full-diversity PIC/PIC-SIC decodable STBCs and DSTBCs that achieve higher rates than the known full-diversity low complexity ML decodable STBCs and DSTBCs.
Resumo:
In this second part of a two part series of papers, we construct a new class of Space-Time Block Codes (STBCs) for point-to-point MIMO channel and Distributed STBCs (DSTBCs) for the amplify-and-forward relay channel that give full-diversity with Partial Interference Cancellation (PIC) and PIC with Successive Interference Cancellation (PIC-SIC) decoders. The proposed class of STBCs include most of the known full-diversity low complexity PIC/PIC-SIC decodable STBCs as special cases. We also show that a number of known full-diversity PIC/PIC-SIC decodable STBCs that were constructed for the point-topoint MIMO channel can be used as full-diversity PIC/PIC-SIC decodable DSTBCs in relay networks. For the same decoding complexity, the proposed STBCs and DSTBCs achieve higher rates than the known low decoding complexity codes. Simulation results show that the new codes have a better bit error rate performance than the low ML decoding complexity codes available in the literature.
Resumo:
Past studies of memory interference in multiprocessor systems have generally assumed that the references of each processor are uniformly distributed among the memory modules. In this paper we develop a model with local referencing, which reflects more closely the behavior of real-life programs. This model is analyzed using Markov chain techniques and expressions are derived for the multiprocessor performance. New expressions are also obtained for the performance in the traditional uniform reference model and are compared with other expressions-available in the literature. Results of a simulation study are given to show the accuracy of the expressions for both models.
Resumo:
Upper bounds on the probability of error due to co-channel interference are proposed in this correspondence. The bounds are easy to compute and can be fairly tight.