973 resultados para insect dispersion
Resumo:
The front speed of the Neolithic (farmer) spread in Europe decreased as it reached Northern latitudes, where the Mesolithic (huntergatherer) population density was higher. Here, we describe a reaction diffusion model with (i) an anisotropic dispersion kernel depending on the Mesolithic population density gradient and (ii) a modified population growth equation. Both effects are related to the space available for the Neolithic population. The model is able to explain the slowdown of the Neolithic front as observed from archaeological data
Resumo:
Flight at high altitude is part of a migration strategy that maximises insect population displacement. This thesis represents the first substantial analysis of insect migration and layering in Europe. Vertical-looking entomological radar has revealed specific characteristics of high-altitude flight: in particular layering (where a large proportion of the migrating insects are concentrated in a narrow altitude band). The meteorological mechanisms underpinning the formation of these layers are the focus of this thesis. Aerial netting samples and radar data revealed four distinct periods of high-altitude insect migration: dawn, daytime, dusk, and night-time. The most frequently observed nocturnal profiles during the summertime were layers. It is hypothesised that nocturnal layers initiate at a critical altitude (200–500 m above ground level) and time (20:00–22:00 hours UTC). Case study analysis, statistical analysis, and a Lagrangian trajectory model showed that nocturnal insect layers probably result from the insects’ response to meteorological conditions. Temperature was the variable most correlated with nocturnal insect layer presence and intensity because insects are poikilothermic, and temperatures experienced during high-altitude migration in temperate climates are expected to be marginal for many insects’ flight. Hierarchical effects were detected such that other variables—specifically wind speed—were only correlated with insect layer presence and intensity once temperatures were warm. The trajectory model developed comprised: (i) insect flight characteristics; (ii) turbulent winds (which cause vertical spread of the layer); and (iii) mean wind speed, which normally leads to horizontal displacements of hundreds of kilometres in a single migratory flight. This thesis has revealed that there is considerable migratory activity over the UK in the summer months, and a range of fascinating phenomena can be observed (including layers). The UK has moved from one of the least studied to perhaps the best studied environments of aerial insect migration and layering in the world.
Resumo:
A wind-tunnel study was conducted to investigate ventilation of scalars from urban-like geometries at neighbourhood scale by exploring two different geometries a uniform height roughness and a non-uniform height roughness, both with an equal plan and frontal density of λ p = λ f = 25%. In both configurations a sub-unit of the idealized urban surface was coated with a thin layer of naphthalene to represent area sources. The naphthalene sublimation method was used to measure directly total area-averaged transport of scalars out of the complex geometries. At the same time, naphthalene vapour concentrations controlled by the turbulent fluxes were detected using a fast Flame Ionisation Detection (FID) technique. This paper describes the novel use of a naphthalene coated surface as an area source in dispersion studies. Particular emphasis was also given to testing whether the concentration measurements were independent of Reynolds number. For low wind speeds, transfer from the naphthalene surface is determined by a combination of forced and natural convection. Compared with a propane point source release, a 25% higher free stream velocity was needed for the naphthalene area source to yield Reynolds-number-independent concentration fields. Ventilation transfer coefficients w T /U derived from the naphthalene sublimation method showed that, whilst there was enhanced vertical momentum exchange due to obstacle height variability, advection was reduced and dispersion from the source area was not enhanced. Thus, the height variability of a canopy is an important parameter when generalising urban dispersion. Fine resolution concentration measurements in the canopy showed the effect of height variability on dispersion at street scale. Rapid vertical transport in the wake of individual high-rise obstacles was found to generate elevated point-like sources. A Gaussian plume model was used to analyse differences in the downstream plumes. Intensified lateral and vertical plume spread and plume dilution with height was found for the non-uniform height roughness
Resumo:
In the event of a release of toxic gas in the center of London, the emergency services would need to determine quickly the extent of the area contaminated. The transport of pollutants by turbulent flow within the complex street and building architecture of cities is not straightforward, and we might wonder whether it is at all possible to make a scientifically-reasoned decision. Here we describe recent progress from a major UK project, ‘Dispersion of Air Pollution and its Penetration into the Local Environment’ (DAPPLE, www.dapple.org.uk). In DAPPLE, we focus on the movement of airborne pollutants in cities by developing a greater understanding of atmospheric flow and dispersion within urban street networks. In particular, we carried out full-scale dispersion experiments in central London (UK) during 2003, 2004, 2007, and 2008 to address the extent of the dispersion of tracers following their release at street level. These measurements complemented previous studies because (i) our focus was on dispersion within the first kilometer from the source, when most of the material was expected to remain within the street network rather than being mixed into the boundary layer aloft, (ii) measurements were made under a wide variety of meteorological conditions, and (iii) central London represents a European, rather than North American, city geometry. Interpretation of the results from the full-scale experiments was supported by extensive numerical and wind tunnel modeling, which allowed more detailed analysis under idealized and controlled conditions. In this article, we review the full-scale DAPPLE methodologies and show early results from the analysis of the 2007 field campaign data.
Resumo:
1 Radar studies of nocturnal insect migration have often found that the migrants tend to form well-defined horizontal layers at a particular altitude. 2 In previous short-term studies, nocturnal layers were usually observed to occur at the same altitude as certain meteorological features, most notably at the altitudes of temperature inversions or nocturnal wind jets. 3 Statistical analyses are presented of four years’ data that compared the presence, sharpness and duration of nocturnal layer profiles (observed using continuously-operating entomological radar) with meteorological variables at typical layer altitudes over the UK. 4 Analysis of these large datasets demonstrated that temperature was the foremost meteorological factor persistently associated with the presence and formation of longer-lasting and sharper layers of migrating insects over southern UK.
Resumo:
Four perfluorocarbon tracer dispersion experiments were carried out in central London, United Kingdom in 2004. These experiments were supplementary to the dispersion of air pollution and penetration into the local environment (DAPPLE) campaign and consisted of ground level releases, roof level releases and mobile releases; the latter are believed to be the first such experiments to be undertaken. A detailed description of the experiments including release, sampling, analysis and wind observations is given. The characteristics of dispersion from the fixed and mobile sources are discussed and contrasted, in particular, the decay in concentration levels away from the source location and the additional variability that results from the non-uniformity of vehicle speed. Copyright © 2009 Royal Meteorological Society
Resumo:
1. In contrast to above-ground insects, comparatively little is known about the behaviour of subterranean insects, due largely to the difficulty of studying them in situ. 2. The movement of newly hatched (neonate) clover root weevil (Sitona lepidus L. Coleoptera: Curculinidae) larvae was studied non-invasively using recently developed high resolution X-ray microtomography. 3. The movement and final position of S. lepidus larvae in the soil was reliably established using X-ray microtomography, when compared with larval positions that were determined by destructively sectioning the soil column. 4. Newly hatched S. lepidus larvae were seen to attack the root rhizobial nodules of their host plant, white clover (Trifolium repens L.). Sitona lepidus larvae travelled between 9 and 27 mm in 9 h at a mean speed of 1.8 mm h(-1). 5. Sitona lepidus larvae did not move through the soil in a linear manner, but changed trajectory in both the lateral and vertical planes.
Resumo:
The paper explores the impact of insect-resistant Bacillus thuringiensis (Bt) cotton on costs and returns over the first two seasons of its commercial release in three sub-regions of Maharashtra State, India. It is the first such research conducted in India based on farmers' own practices rather than trial plots. Data were collected for a total of 7793 cotton plots in 2002 and 1577 plots in 2003. Results suggest that while the cost of cotton seed was much higher for farmers growing Bt cotton relative to those growing non-Bt cotton, the costs of bollworm spray were much lower. While Bt plots had greater costs (seed plus insecticide) than non-Bt plots, the yields and revenue from Bt plots were much higher than those of non-Bt plots (some 39% and 63% higher in 2002 and 2003, respectively). Overall, the gross margins of Bt plots were some 43% (2002) and 73% (2003) higher than those of non-Bt plots, although there was some variation between the three sub-regions of the state. The results suggest that Bt cotton has provided substantial benefits for farmers in India over the 2 years, but there are questions as to whether these benefits are sustainable. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
A new model of dispersion has been developed to simulate the impact of pollutant discharges on river systems. The model accounts for the main dispersion processes operating in rivers as well as the dilution from incoming tributaries and first-order kinetic decay processes. The model is dynamic and simulates the hourly behaviour of river flow and pollutants along river systems. The model has been applied to the Aries and Mures River System in Romania and has been used to assess the impacts of potential dam releases from the Roia Montan Mine in Transylvania, Romania. The question of mine water release is investigated under a range of scenarios. The impacts on pollution levels downstream at key sites and at the border with Hungary are investigated.