984 resultados para industrial engineering
Resumo:
Louisiana Transportation Research Center, Baton Rouge
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
"The results of a research project undertaken by the Department of Industrial Engineering and Administration of the Cornell University College of Engineering under a summer grant [1963] from the New York State Office of Transportation."
Resumo:
Mode of access: Internet.
Resumo:
Cover title.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
This paper reviews the recent developments in the mechanics of superplasticity and its applications in industrial practice. After introducing the phenomena of superplasticity, the basic experiments for determining material deformation behavior and related parameters, and constructing superplastic constitutive equations, are reviewed. Finite element related formulations and techniques for simulating superplastic forming are discussed, together with some practical applications. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Superplastic bulging is the most successful application of superplastic forming (SPF) in industry, but the non-uniform wall thickness distribution of parts formed by it is a common technical problem yet to be overcome. Based on a rigid-viscoplastic finite element program developed by the authors, for simulation of the sheet superplastic forming process combined with the prediction of microstructure variations (such as grain growth and cavity growth), a simple and efficient preform design method is proposed and applied to the design of preform mould for manufacturing parts with uniform wall thickness. Examples of formed parts are presented here to demonstrate that the technology can be used to improve the uniformity of wall thickness to meet practical requirements. (C) 2004 Elsevier B.V. All rights reserved.
Protective Iron Carbonate Films—Part 2: Chemical Removal by Dissolution in Single-Phase Aqueous Flow
Resumo:
The effects of process variables on the quality of high-pressure die cast components was determined with the aid of in-cavity pressure sensors. In particular, the effects of set intensification pressure, delay time, and casting velocity have been investigated. The in-cavity pressure sensor has been used to determine how conditions within the die-cavity are related to the process parameters regulated by the die casting machine, and in turn the effect of variations in these parameters on the integrity of the final part. Porosity was found to decrease with increasing intensification pressure and increase with increasing casting velocity. The delay time before the application of the intensification pressure was not observed to have a significant effect on porosity levels. (c) 2006 Elsevier B.V. All rights reserved.