933 resultados para immediate implants
Resumo:
Surface and biomechanical analysis of titanium implant surfaces modified by laser beam with and without hydroxyapatite. Titanium implants with 3 different surfaces were inserted into the tibias of 30 rabbits: group I (GI) machined surface (control group), group II irradiated with laser (GII), and group III irradiated with laser and hydroxyapatite coating applied-biomimetic method (GIII). Topographical analysis with scanning electron microscopy was made before surgery in the tibia. These rabbits were distributed into 2 periods of observation: 4 and 8 weeks postsurgery, after which biomechanical analysis (removal torque) was conducted. Statistical analysis used the Student-Newman-Keuls method. Surface showed roughness in GII and GIII. Biomechanical analysis demonstrated values with significant differences in GII and GIII. Titanium implants modified by laser irradiation can increase osseointegration during the initial phase.
Resumo:
Osteoporosis is a systemic disorder characterized by generalized decrease in bone mineral density. Dental implantology is a specialty with high predictability when both quantity and quality of the bone are respected. Therefore, the diagnosis and the implant treatment in patients with osteoporosis are important. In the current study, a literature review about osteoporosis and dental implant therapy was conducted. PubMed, Cochrane, ISI, Dentistry Oral Science, SciELO, and Bireme databases were consulted over the last 20 years. English- and Portuguese-language articles were included in this revision. Some authors stated that the osteoporotic bone is similar to the proposed model of bone type IV. Randomized clinical studies reported implant failure in patients with osteoporosis after menopause. Studies that contraindicate the use of implants in patients with osteoporosis infer that the impaired bone metabolism led to reduction of bone healing around the implants. Nevertheless, other authors believe that the presence of osteoporosis is not a definitive condition to contraindicate the therapy with dental implants. In these cases, the dentist should perform a proper treatment planning, modifying the implant geometry, and use larger implant diameter and with surface treatment. Thus, osteoporosis is not a contraindication for implant surgery because an accurate analysis of bone quality by means tomography is performed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Implants in craniofacial reconstructions improve prostheses retention and stability, comfort, and safety for the patient. According to biomechanical principles, the treatment success regarding osseointegration maintenance depends on an adequate surgery technique associated to a retention system that provides favorable tension distribution to implants. Implants in the mastoid area are a very important aid for retention of auricular prostheses. Color stability of resin and silicone is an important factor for longevity of auricular prostheses, and the high degree of satisfaction of patients with head and neck defects receiving epithesial reconstruction in the maxillofacial region is demonstrated.
Resumo:
Objectives: The vertical location of the implant-abutment connection influences the periimplant bone morphology. It is unknown, however, whether different microgap configurations cause different bone reactions. Therefore, in this study the bone morphologies of two different implant systems were compared.Material and methods: Three months after tooth extraction in eight mongrel dogs, two grit-blasted screw implants with internal Morse taper connection (ANK group) were placed on one side whereas the contralateral side received two oxidized screw implants with external hex (TIU group). One implant on each side was placed level with the bone (equicrestal), the second implant was inserted 1.5mm below bone level (subcrestal). After 3 months the implants were uncovered. Three months after stage two surgery, histometrical evaluations were performed in order to assess the periimplant bone levels (PBL), the first bone-to-implant contact points (BICP), the width (HBD) and the steepness (SLO) of the bone defect.Results: All implants osseointegrated clinically and histologically. Bone overgrowth of the microgap was seen in ANK implants only. No significant differences between ANK and TIU could be detected in neither vertical position for PBL and BICP. However, a tendency in favor of ANK was visible when the implants were placed subcrestally. In the parameters HBD (ANK equicrestal -0.23mm; TIU equicrestal -0.51mm; ANK subcrestal +0.19mm; TIU subcrestal -0.57mm) and SLO (ANK equicrestal 35.36 degrees; TIU equicrestal 63.22 degrees; ANK subcrestal 20.40 degrees; TIU subcrestal 44.43 degrees) more pronounced and significant differences were noted.Conclusions: Within the limits of this study, it is concluded that different microgap designs cause different shapes and sizes of the periimplant ('dish-shaped') bone defect in submerged implants both in equicrestal and subcrestal positions.
Resumo:
Purpose: This study used bovine ribs to comparatively assess the deformation, roughness, and mass loss for 3 different types of surface treatments with burs, used in osteotomies, for the installation of osseointegrated implants.Materials and Methods: The study used 25 bovine ribs and 3 types of helical burs (2.0 mm and 3.0 mm) for osteotomies during implant placement (a steel bur [G1], a bur with tungsten carbide film coating in a carbon matrix [G2], and a zirconia bur [G3]), which were subdivided into 5 subgroups: 1, 2, 3, 4, and 5, corresponding to 0, 10, 20, 30, and 40 perforations, respectively. The surface roughness (mean roughness [Ra], partial roughness, and maximum roughness) and mass (in grams) of all the burs were measured, and the burs were analyzed in a scanning electron microscope before and after use. Data were tabulated and statistically analyzed by use of the Kruskal-Wallis test, and when a statistically significant difference was found, the Dunn test was used.Results: There was a loss of mass in all groups (G1, G2, and G3), and this loss was gradual, according to the number of perforations made (1, 2, 3, 4, and 5). However, this difference was not statistically significant (P < .05). Regarding the roughness, G3 presented an increase in Ra, partial roughness, and maximum roughness (P < .05) compared with G2 and an increase in Ra compared with G1. There was no statistically significant difference (P > .05) between G1 and G2. The scanning electron microscopy analysis found areas of deformation in all the 2.0-mm samples, with loss of substrates, and this characteristic was more frequent in G3.Conclusions: The 2.0-mm zirconia burs had a greater loss of substrates and abrasive wear in the cutting area. They also presented an increased roughness when compared with the steel and the tungsten carbide coating film in carbon matrix. There was no statistically significant difference (P < .05) between G1 and G2 in any mechanical test carried out. (C) 2012 American Association of Oral and Maxillofacial Surgeons J Oral Maxillofac Surg 70:e608-e621, 2012
Resumo:
Purpose: The vertical location of the implant-abutment connection influences the subsequent reaction of the peri-implant bone. It is not known, however, whether any additional influence is exerted by different microgap configurations. Therefore, the radiographic bone reactions of two different implant systems were monitored for 6 months. Materials and Methods: In eight mongrel dogs, two implants with an internal Morse-taper connection (INT group) were placed on one side of the mandible; the contralateral side received two implants with an external-hex connection (EXT group). on each side, one implant was aligned at the bone level (equicrestal) and the second implant was placed 1.5 mm subcrestal. Healing abutments were placed 3 months after submerged healing, and the implants were maintained for another 3 months without prosthetic loading. At implant placement and after 1, 2, 3, 4, 5, and 6 months, standardized radiographs were obtained, and peri-implant bone levels were measured with regard to microgap location and evaluated statistically. Results: All implants osseointegrated clinically and radiographically. The overall mean bone loss was 0.68 +/- 0.59 mm in the equicrestal INT group, 1.32 +/- 0.49 mm in the equicrestal EXT group, 0.76 +/- 0.49 mm in the subcrestal INT group, and 1.88 +/- 0.81 mm in the subcrestal EXT group. The differences between the INT and EXT groups were statistically significant (paired t tests). The first significant differences between the internal and external groups were seen at month 1 in the subcrestal groups and at 3 months in the equicrestal groups. Bone loss was most pronounced in the subcrestal EXT group. Conclusions: Within the limits of this study, different microgap configurations can cause different amounts of bone loss, even before prosthetic loading. Subcrestal placement of a butt-joint microgap design may lead to more pronounced radiographic bone loss. INT J ORAL MAXILLOFAC IMPLANTS 2011;26:941-946
Resumo:
Purpose: This study sought to evaluate the effect of repeated implant drilling on the immediate bone-cell viability, and to evaluate drill wear by scanning electron microscopy.Materials and Methods: The tibiae of 10 rabbits were used, divided into 5 groups (G): G1 corresponded to new drills, and G2, G3, G4, and G5 corresponded to drills used 10, 20, 30, and 40 times, respectively. The animals received 10 sequential osteotomies in each tibia. The animals were euthanized immediately after the osteotomies by perfusion with 4% formaldehyde. Samples then underwent immunohistochemistry processing for ordinal qualitative analysis of osteoprotegerin (OPG), the RANK ligant (RANKL; a tumor-related necrosis factor receptor family), and osteocalcin protein immunolabels, as detected by the immunoperoxidase method and revealed with 3,3-diaminobenzidine. Drill wear and plastic deformation were analyzed by scanning electron microscopy (SEM).Results: The proteins were expressed in osteocytes of the superior bone cortical during the 40 drillings. However, in G4 and G5, a discrete increase in the expression of RANKL was observed, when compared with OPG; this increase was statistically significant in G5 (P = .016). The SEM analysis revealed major plastic deformation and drill wear in G4 and G5.Conclusion: Based on the present methodology, it may be concluded that cell viability is preserved if a less traumatic surgical protocol is used. However, the repeated use of drills alters the protein balance as of the thirtieth perforation. (C) 2008 American Association of Oral and Maxillofacial Surgeons.
Resumo:
This article reports the 20-month clinical outcome of the use of 4 zygomatic implants with immediate occlusal loading and reverse planning for the retreatment of atrophic edentulous maxilla after failed rehabilitation with autogenous bone graft reconstruction and maxillary implants. The intraoral clinical examination revealed mispositioned and loosened implants underneath a maxillary complete denture. The panoramic radiograph showed 6 maxillary implants. One implant was displaced into the right maxillary sinus, and the implant anchored in the region of tooth 21 was fractured. The other implants presented peri-implant bone loss. The implants anchored in the regions of teeth 21 to 23 and 11 to 13 were first removed. After 2 months, the reverse planning started with placement of 4 zygomatic fixtures, removal of the implants migrated into the sinus cavity and anchored in the region of tooth 17, and installation of a fixed denture. After 20 months of follow-up, no painful symptoms, peri-implant inflammation or infection, implant instability, or bone resorption was observed. The outcomes of this case confirm that the zygoma can offer a predictable anchorage and support function for a fixed denture in severely resorbed maxillae.
Resumo:
The aim of this study was to evaluate the influence of the platform-switching technique on stress distribution in implant, abutment, and pen-implant tissues, through a 3-dimensional finite element study. Three 3-dimensional mandibular models were fabricated using the Solid Works 2006 and InVesalius software. Each model was composed of a bone block with one implant 10 mm long and of different diameters (3.75 and 5.00 mm). The UCLA abutments also ranged in diameter from 5.00 mm to 4.1 mm. After obtaining the geometries, the models were transferred to the software FEMAP 10.0 for pre- and postprocessing of finite elements to generate the mesh, loading, and boundary conditions. A total load of 200 N was applied in axial (0 degrees), oblique (45 degrees), and lateral (90) directions. The models were solved by the software NeiNastran 9.0 and transferred to the software FEMAP 10.0 to obtain the results that were visualized through von Mises and maximum principal stress maps. Model A (implants with 3.75 mm/abutment with 4.1 mm) exhibited the highest area of stress concentration with all loadings (axial, oblique, and lateral) for the implant and the abutment. All models presented the stress areas at the abutment level and at the implant/abutment interface. Models B (implant with 5.0 mm/abutment with 5.0 mm) and C (implant with 5.0 mm/abutment with 4.1 mm) presented minor areas of stress concentration and similar distribution pattern. For the cortical bone, low stress concentration was observed in the pen-implant region for models B and C in comparison to model A. The trabecular bone exhibited low stress that was well distributed in models B and C. Model A presented the highest stress concentration. Model B exhibited better stress distribution. There was no significant difference between the large-diameter implants (models B and C).
Resumo:
Objective: To evaluate the bone regeneration of cervical defects produced around titanium implants filled with blood clot and filled with centrifuged bone marrow (CBM) by means of histomorphometric analysis.Materials and Methods: Twelve rabbits received 2 titanium implants in each right tibia, with the upper cortical prepared with a 5-mm drill and the lower cortex with a 3-mm-diameter drill. Euthanasia was performed to allow analysis at 7, 21, and 60 days after operation. The samples were embedded in light curing resin, cut and stained with alizarin red and Stevenel blue for a histomorphometric analysis of the bone-to-implant contact (BIC) and the bone area around implant (BA). The values obtained were statistically analyzed using the nonparametric Kruskal-Wallis test (P = 0.05).Results: At 60 days postoperation, the groups had their cervical defects completely filled by neo-formed bone tissue. There was no statistically significant difference between the groups regarding BIC and BA during the analyzed periods.Conclusion: There was no difference in the bone repair of periimplant cervical defects with or without the use of CBM. (Implant Dent 2012;21:481-485)
Resumo:
Purpose: The implant-abutment connection (microgap) influences the pen-implant bone morphology. However, it is unclear if different microgap configurations additionally modify bone reactions. This preliminary study aimed to radiographically monitor pen-implant bone levels in two different microgap configurations during 3 months of nonsubmerged healing. Materials and Methods: Six dogs received two implants with internal Morse taper connection (INT group) on one side of the mandible and two implants with external-hex connection (EXT group) on the other side. One implant on each side was positioned at bone level (equicrestal); the second implant was inserted 1.5 mm below the bone crest (subcrestal). Healing abutments were attached directly after implant insertion, and the implants were maintained for 3 months without prosthetic loading. At implant placement and 1, 2, and 3 months, standardized radiographs were taken to monitor pen-implant bone levels. Results: All implants osseointegrated. A total bone loss of 0.48 +/- 0.66 mm was measured in the equicrestal INT group, 0.69 +/- 0.43 mm in the equicrestal EXT group, 0.79 +/- 0.93 mm in the subcrestal INT group, and 1.56 +/- 0.53 mm in the subcrestal EXT group (P>.05, paired t tests). Within the four groups, bone loss over time became significantly greater in the EXT groups than in the INT groups. The greatest bone loss was noted in the subcrestal EXT group. Conclusion: Within the limits of this animal study, it seems that even without prosthetic loading, different microgap configurations exhibit different patterns of bone loss during nonsubmerged healing. Subcrestal positioning of an external butt joint microgap may lead to faster radiographic bone loss. Int J Prosthodont 2011;24:445-452.
Resumo:
Purpose: The aim of this study was to evaluate the satisfaction of patients rehabilitated with zygomatic fixtures and prosthesis with immediate loading.Materials and Methods: The study selected patients who were rehabilitated with zygomatic implants at the clinic of the Latin American Institute for Dental Research and Education (ILAPEO. Curitiba-PR. Brasil) between 2005 and 2009. The patients were asked to answer a control-questionnaire during their follow-up visits. Data were collected regarding the level of patient satisfaction, reason for dissatisfaction, number of post-operative clinical sessions, and the type of complication. Sixteen patients were selected: 10 females and 6 males.Results: Half of the patients were completely satisfied while the other half were satisfied with some complaints. The complaints were related to hygiene, esthetics, phonetics, and discomfort during chewing. Regarding the post-operative evaluation, 50% of the patients were attended due to the prosthesis (62.5%) and the implant (37.5%).Conclusions: The treatment with zygomatic fixtures is predictable and reliable. The patients were satisfied both with implants and prosthesis. (C) 2012 American Association of Oral and Maxillofacial Surgeons J Oral Maxillofac Surg 70: 314-319, 2012
Resumo:
Purpose: The aim of this study was to evaluate the bone repair process in the maxillary sinus in monkeys treated with high-density porous polyethylene (Medpor)Methods: Four capuchin monkeys (Cebus apella) were submitted to bilateral horizontal osteotomies in the anterior wall of the maxillary sinus and divided into 2 groups: control group, left side with no implants, and porous polyethylene group, right side with Medpor. After a period of 145 days after implant placement, the maxillae were removed for histologic and histometric analyses.Results: Bone repair in osteotomized areas took place by connective tissue in 58.5% and 58.7% in the control group and the porous polyethylene group, respectively. In the contact surface with Medpor, bone repair occurred in 41.3%.Conclusions: Medpor was not reabsorbed within the period of this study and allowed bone repair surrounding it. The porous polyethylene constitutes a feasible alternative for bone defect reconstruction.
Resumo:
The aim of this study was to evaluate the stress distribution of platform switching implants using a photoelastic method. Three models were constructed of the photoelastic resin PL-2, with a single implant and a screw-retained implant-supported prosthesis. These models were Model A, platform 5.0 mm/abutment 4.1 mm; Model B, platform 4.1 mm/abutment 4.1 mm; and Model C, platform 5.00 mm/abutment 5.00 mm. Axial and oblique (45 degrees) loads of 100 N were applied using a Universal Testing Machine (EMIC DL 3000). Images were photographed with a digital camera and visualized with software (AdobePhotoshop) to facilitate the qualitative analysis. The highest stress concentrations were observed at the apical third of the 3 models. With the oblique load, the highest stress concentrations were located at the implant apex, opposite the load application. Stress concentrations decreased in the cervical region of Model A (platform switching), and Models A (platform switching) and C (conventional/wide-diameter) displayed similar stress magnitudes. Finally, Model B (conventional/regular diameter) displayed the highest stress concentrations of the models tested.