832 resultados para homeostatic model assessment
Resumo:
Shropshire Energy Team initiated this study to examine consumption and associated emissions in the predominantly rural county of Shropshire. Current use of energy is not sustainable in the long term and there are various approaches to dealing with the environmental problems it creates. Energy planning by a local authority for a sustainable future requires detailed energy consumption and environmental information. This information would enable target setting and the implementation of policies designed to encourage energy efficiency improvements and exploitation of renewable energy resources. This could aid regeneration strategies by providing new employment opportunities. Associated reductions in carbon dioxide and other emissions would help to meet national and international environmental targets. In the absence of this detailed information, the objective was to develop a methodology to assess energy consumption and emissions on a regional basis from 1990 onwards for all local planning authorities. This would enable a more accurate assessment of the relevant issues, such that plans are more appropriate and longer lasting. A first comprehensive set of data has been gathered from a wide range of sources and a strong correlation was found between population and energy consumption for a variety of regions across the UK. In this case the methodology was applied to the county of Shropshire to give, for the first time, estimates of primary fuel consumption, electricity consumption and associated emissions in Shropshire for 1990 to 2025. The estimates provide a suitable baseline for assessing the potential contribution renewable energy could play in meeting electricity demand in the country and in reducing emissions. The assessment indicated that in 1990 total primary fuel consumption was 63,518,018 GJ/y increasing to 119,956,465 GJ/y by 2025. This is associated with emissions of 1,129,626 t/y of carbon in 1990 rising to 1,303,282 t/y by 2025. In 1990, 22,565,713 GJ/y of the primary fuel consumption was used for generating electricity rising to 23,478,050 GJ/y in 2025. If targets to reduce primary fuel consumption are reached, then emissions of carbon would fall to 1,042,626 by 2025, if renewable energy targets were also reached then emissions of carbon would fall to 988,638 t/y by 2025.
Resumo:
This research describes a computerized model of human classification which has been constructed to represent the process by which assessments are made for psychodynamic psychotherapy. The model assigns membership grades (MGs) to clients so that the most suitable ones have high values in the therapy category. Categories consist of a hierarchy of components, one of which, ego strength, is analysed in detail to demonstrate the way it has captured the psychotherapist's knowledge. The bottom of the hierarchy represents the measurable factors being assessed during an interview. A questionnaire was created to gather the identified information and was completed by the psychotherapist after each assessment. The results were fed into the computerized model, demonstrating a high correlation between the model MGs and the suitability ratings of the psychotherapist (r = .825 for 24 clients). The model has successfully identified the relevant data involved in assessment and simulated the decision-making process of the expert. Its cognitive validity enables decisions to be explained, which means that it has potential for therapist training and also for enhancing the referral process, with benefits in cost effectiveness as well as in the reduction of trauma to clients. An adapted version measuring client improvement would give quantitative evidence for the benefit of therapy, thereby supporting auditing and accountability. © 1997 The British Psychological Society.
Resumo:
The cross-country petroleum pipelines are environmentally sensitive because they traverse through varied terrain covering crop fields, forests, rivers, populated areas, desert, hills and offshore. Any malfunction of these pipelines may cause devastating effect on the environment. Hence, the pipeline operators plan and design pipelines projects with sufficient consideration of environment and social aspects along with the technological alternatives. Traditionally, in project appraisal, optimum technical alternative is selected using financial analysis. Impact assessments (IA) are then carried out to justify the selection and subsequent statutory approval. However, the IAs often suggest alternative sites and/or alternate technology and implementation methodology, resulting in revision of entire technical and financial analysis. This study addresses the above issues by developing an integrated framework for project feasibility analysis with the application of analytic hierarchy process (AHP), a multiple attribute decision-making technique. The model considers technical analysis (TA), socioeconomic IA (SEIA) and environmental IA (EIA) in an integrated framework to select the best project from a few alternative feasible projects. Subsequent financial analysis then justifies the selection. The entire methodology has been explained here through a case application on cross-country petroleum pipeline project in India.
Resumo:
Organizations are seeking new, integrated systems that enable rapid changes through early identification of opportunities and problems, tracking of progress against plans, flexible allocation of resources to achieve goals, and consistent operations. Total Quality Management (TQM) is an overall business strategy. It means that all activities of the company will be focused on satisfying all stakeholders of the company. TQM can be realised by using the EFQM model. The EFQM model is a tool that organizations may use as a framework for self-evaluation that enables an organization to identify its strengths and areas for improvement and the extent to which its operations and results are in line with the characteristics of an excellent organization. We focus on a training organisation or to the learning department of an organization. So we are limiting the EFQM model to the training /learning activities. We can apply EFQM perfect on the level of an activity (business line) of a company. We selected the main criteria for which the learner can play the role of assessor. So only three main criteria left: the enabling resources, the enabling processes and the (learning) results for the learner. We limited the last one to “learning results” based on the Kirkpatrick model.
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2015
Resumo:
Video streaming via Transmission Control Protocol (TCP) networks has become a popular and highly demanded service, but its quality assessment in both objective and subjective terms has not been properly addressed. In this paper, based on statistical analysis a full analytic model of a no-reference objective metric, namely pause intensity (PI), for video quality assessment is presented. The model characterizes the video playout buffer behavior in connection with the network performance (throughput) and the video playout rate. This allows for instant quality measurement and control without requiring a reference video. PI specifically addresses the need for assessing the quality issue in terms of the continuity in the playout of TCP streaming videos, which cannot be properly measured by other objective metrics such as peak signal-to-noise-ratio, structural similarity, and buffer underrun or pause frequency. The performance of the analytical model is rigidly verified by simulation results and subjective tests using a range of video clips. It is demonstrated that PI is closely correlated with viewers' opinion scores regardless of the vastly different composition of individual elements, such as pause duration and pause frequency which jointly constitute this new quality metric. It is also shown that the correlation performance of PI is consistent and content independent. © 2013 IEEE.
Resumo:
Small and Medium Enterprises (SMEs) play an important part in the economy of any country. Initially, a flat management hierarchy, quick response to market changes and cost competitiveness were seen as the competitive characteristics of an SME. Recently, in developed economies, technological capabilities (TCs) management- managing existing and developing or assimilating new technological capabilities for continuous process and product innovations, has become important for both large organisations and SMEs to achieve sustained competitiveness. Therefore, various technological innovation capability (TIC) models have been developed at firm level to assess firms‘ innovation capability level. These models output help policy makers and firm managers to devise policies for deepening a firm‘s technical knowledge generation, acquisition and exploitation capabilities for sustained technological competitive edge. However, in developing countries TCs management is more of TCs upgrading: acquisitions of TCs from abroad, and then assimilating, innovating and exploiting them. Most of the TIC models for developing countries delineate the level of TIC required as firms move from the acquisition to innovative level. However, these models do not provide tools for assessing the existing level of TIC of a firm and various factors affecting TIC, to help practical interventions for TCs upgrading of firms for improved or new processes and products. Recently, the Government of Pakistan (GOP) has realised the importance of TCs upgrading in SMEs-especially export-oriented, for their sustained competitiveness. The GOP has launched various initiatives with local and foreign assistance to identify ways and means of upgrading local SMEs capabilities. This research targets this gap and developed a TICs assessment model for identifying the existing level of TIC of manufacturing SMEs existing in clusters in Sialkot, Pakistan. SME executives in three different export-oriented clusters at Sialkot were interviewed to analyse technological capabilities development initiatives (CDIs) taken by them to develop and upgrade their firms‘ TCs. Data analysed at CDI, firm, cluster and cross-cluster level first helped classify interviewed firms as leader, follower and reactor, with leader firms claiming to introduce mostly new CDIs to their cluster. Second, the data analysis displayed that mostly interviewed leader firms exhibited ‗learning by interacting‘ and ‗learning by training‘ capabilities for expertise acquisition from customers and international consultants. However, these leader firms did not show much evidence of learning by using, reverse engineering and R&D capabilities, which according to the extant literature are necessary for upgrading existing TIC level and thus TCs of firm for better value-added processes and products. The research results are supported by extant literature on Sialkot clusters. Thus, in sum, a TIC assessment model was developed in this research which qualitatively identified interviewed firms‘ TIC levels, the factors affecting them, and is validated by existing literature on interviewed Sialkot clusters. Further, the research gives policy level recommendations for TIC and thus TCs upgrading at firm and cluster level for targeting better value-added markets.
Resumo:
Stroke is a prevalent disorder with immense socioeconomic impact. A variety of chronic neurological deficits result from stroke. In particular, sensorimotor deficits are a significant barrier to achieving post-stroke independence. Unfortunately, the majority of pre-clinical studies that show improved outcomes in animal stroke models have failed in clinical trials. Pre-clinical studies using non-human primate (NHP) stroke models prior to initiating human trials are a potential step to improving translation from animal studies to clinical trials. Robotic assessment tools represent a quantitative, reliable, and reproducible means to assess reaching behaviour following stroke in both humans and NHPs. We investigated the use of robotic technology to assess sensorimotor impairments in NHPs following middle cerebral artery occlusion (MCAO). Two cynomolgus macaques underwent transient MCAO for 90 minutes. Approximately 1.5 years following the procedure these NHPs and two non-stroke control monkeys were trained in a reaching task with both arms in the KINARM exoskeleton. This robot permits elbow and shoulder movements in the horizontal plane. The task required NHPs to make reaching movements from a centrally positioned start target to 1 of 8 peripheral targets uniformly distributed around the first target. We analyzed four movement parameters: reaction time, movement time (MT), initial direction error (IDE), and number of speed maxima to characterize sensorimotor deficiencies. We hypothesized reduced performance in these attributes during a neurobehavioural task with the paretic limb of NHPs following MCAO compared to controls. Reaching movements in the non-affected limbs of control and experimental NHPs showed bell-shaped velocity profiles. In contrast, the reaching movements with the affected limbs were highly variable. We found distinctive patterns in MT, IDE, and number of speed peaks between control and experimental monkeys and between limbs of NHPs with MCAO. NHPs with MCAO demonstrated more speed peaks, longer MTs, and greater IDE in their paretic limb compared to controls. These initial results qualitatively match human stroke subjects’ performance, suggesting that robotic neurobehavioural assessment in NHPs with stroke is feasible and could have translational relevance in subsequent human studies. Further studies will be necessary to replicate and expand on these preliminary findings.
Resumo:
Steady-state computational fluid dynamics (CFD) simulations are an essential tool in the design process of centrifugal compressors. Whilst global parameters, such as pressure ratio and efficiency, can be predicted with reasonable accuracy, the accurate prediction of detailed compressor flow fields is a much more significant challenge. Much of the inaccuracy is associated with the incorrect selection of turbulence model. The need for a quick turnaround in simulations during the design optimisation process, also demands that the turbulence model selected be robust and numerically stable with short simulation times.
In order to assess the accuracy of a number of turbulence model predictions, the current study used an exemplar open CFD test case, the centrifugal compressor ‘Radiver’, to compare the results of three eddy viscosity models and two Reynolds stress type models. The turbulence models investigated in this study were (i) Spalart-Allmaras (SA) model, (ii) the Shear Stress Transport (SST) model, (iii) a modification to the SST model denoted the SST-curvature correction (SST-CC), (iv) Reynolds stress model of Speziale, Sarkar and Gatski (RSM-SSG), and (v) the turbulence frequency formulated Reynolds stress model (RSM-ω). Each was found to be in good agreement with the experiments (below 2% discrepancy), with respect to total-to-total parameters at three different operating conditions. However, for the off-design conditions, local flow field differences were observed between the models, with the SA model showing particularly poor prediction of local flow structures. The SST-CC showed better prediction of curved rotating flows in the impeller. The RSM-ω was better for the wake and separated flow in the diffuser. The SST model showed reasonably stable, robust and time efficient capability to predict global and local flow features.
Resumo:
Nowadays, risks arising from the rapid development of oil and gas industries are significantly increasing. As a result, one of the main concerns of either industrial or environmental managers is the identification and assessment of such risks in order to develop and maintain appropriate proactive measures. Oil spill from stationary sources in offshore zones is one of the accidents resulting in several adverse impacts on marine ecosystems. Considering a site's current situation and relevant requirements and standards, risk assessment process is not only capable of recognizing the probable causes of accidents but also of estimating the probability of occurrence and the severity of consequences. In this way, results of risk assessment would help managers and decision makers create and employ proper control methods. Most of the represented models for risk assessment of oil spills are achieved on the basis of accurate data bases and analysis of historical data, but unfortunately such data bases are not accessible in most of the zones, especially in developing countries, or else they are newly established and not applicable yet. This issue reveals the necessity of using Expert Systems and Fuzzy Set Theory. By using such systems it will be possible to formulize the specialty and experience of several experts and specialists who have been working in petroliferous areas for several years. On the other hand, in developing countries often the damages to environment and environmental resources are not considered as risk assessment priorities and they are approximately under-estimated. For this reason, the proposed model in this research is specially addressing the environmental risk of oil spills from stationary sources in offshore zones.
Resumo:
Assessment processes are essential to guarantee quality and continuous improvement of software in healthcare, as they measure software attributes in their lifecycle, verify the degree of alignment between the software and its objectives and identify unpredicted events. This article analyses the use of an assessment model based on software metrics for three healthcare information systems from a public hospital that provides secondary and tertiary care in the region of Ribeirão Preto. Compliance with the metrics was investigated using questionnaires in guided interviews of the system analysts responsible for the applications. The outcomes indicate that most of the procedures specified in the model can be adopted to assess the systems that serves the organization, particularly in the attributes of compatibility, reliability, safety, portability and usability.
Resumo:
Business Process Management (BPM) has been identified as the number one business priority by a recent Gartner study (Gartner, 2005). However, BPM has a plethora of facets as its origins are in Business Process Reengineering, Process Innovation, Process Modelling, and Workflow Management to name a few. Organisations increasingly recognize the requirement for an increased process orientation and require appropriate comprehensive frameworks, which help to scope and evaluate their BPM initiative. This research project aims toward the development of a holistic and widely accepted BPM maturity model, which facilitates the assessment of BPM capabilities. This paper provides an overview about the current model with a focus on the actual model development utilizing a series of Delphi studies. The development process includes separate studies that focus on further defining and expanding the six core factors within the model, i.e. strategic alignment, governance, method, Information Technology, people and culture.