967 resultados para high refractive index glass
Resumo:
This work presents the application of a scalar finite element formulation for Ex (TE-like) modes in anisotropic planar and channel waveguides with diagonal permittivity tensor, diffused in both transversal directions. This extended formulation considers explicitly both the variations of the refractive index and their spatial derivates inside of each finite element. Dispersion curves for Ex modes in planar and channel waveguides are shown, and the results compared with solutions obtained by other formulations.
Resumo:
Antimony based glasses have been investigated for the first time regarding the possibility of holographic data storage using visible lasers sources. Changes in both refractive index and the absorption coefficient were measured using a holographic setup. The modulation of the optical constants is reversible by heat treatment. Bragg gratings were written under visible light of an Ar laser and erased thermally.
Resumo:
Hybrid planar waveguides were prepared from Ti4+-acetylacetone (acac)-Ureasil sols deposited on glass substrates. Structural features have been investigated by spectroscopic measurements (Fourier Transform Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS) and Raman scattering) and Small Angle X-ray Scattering (SAXS). Addition of Ti 4+-acac to the ureasil (Ti:Si molar ratio 1:1) leads to the formation of bonds between the Ti complex and the siloxane groups, whereas further addition of Ti4+ (Ti:Si molar ratio 5:1) leads to the additional formation of titanium-rich nanoclusters. The optical parameters of the waveguides such as refractive index, thickness, propagating modes and attenuation coefficient were measured at 632.8, 543.5 and 1550 nm by the prism coupling technique. The refractive index can be tuned by the Ti4+ relative content. The few microns thick planar waveguides support well confined propagating modes with low attenuation loss for all compositions. ©2006 Sociedade Brasileira de Química.
Resumo:
In this work we use a stabilized holographic technique to study both refractive index and absorption gratings recorded in thin films made of Disperse Red 1 (DR1) embedded in an organic polymer matrix (PMMA) deposited on glass substrate. Gratings are recorded by linearly polarized illumination with the interference pattern of two crossing beams. One of the beams is phase modulated and the interference signals between the transmitted and diffracted waves are detected by a tuned lock-in amplifier. The technique allows measuring separately changes of the refractive index and the absorption coefficient during the course of the photoreaction process. The time evolution of the diffraction efficiencies during recording has shown bi-exponential kinetics for both gratings. © 2008 American Institute of Physics.
Resumo:
In this work we studied the changes of the optical constants of films in the binary system Sb2O3-Sb2S3 induced by light in the VIS-UV. The measurements were performed before and after homogeneous irradiation of the films to a Hg lamp and in real time during the holographic exposure of the samples (at 458nm). Changes of the absorption coefficient (amplitude grating) and refractive index (phase grating) were measured simultaneously using the self-diffraction using the holographic setup. Besides the films presented a strong photodarkening effect under homogeneous irradiation, the samples holographically exposed presented only refractive index modulations. None amplitude modulation was measured in real time for spatial frequencies of about 1000 l/mm. © 2009 SPIE.
Resumo:
Glasses in the ternary system (70 - x)NaPO3-30WO 3-xBi2O3, with x = 0-30 mol %, were prepared by the conventional melt-quenching technique. X-ray diffraction (XRD) measurements were performed to confirm the noncrystalline nature of the samples. The influence of the Bi2O3 on the thermal, structural, and optical properties was investigated. Differential scanning calorimetry analysis showed that the glass transition temperature, Tg, increases from 405 to 440 C for 0 ≤ x ≤ 15 mol % and decreases to 417 C for x = 30 mol %. The thermal stability against devitrification decreases from 156 to 67 C with the increase of the Bi2O3 content. The structural modifications were studied by Raman scattering, showing a bismuth insertion into the phosphate chains by Bi-O-P linkage. Furthermore, up to 15 mol % of Bi 2O3 formation of BiO6 clusters is observed, associated with Bi-O-Bi linkage, resulting in a progressive break of the linear phosphate chains that leads to orthophosphate Q0 units. The linear refractive index, n0, was measured using the prism-coupler technique at 532, 633, and 1550 nm, whereas the nonlinear (NL) refractive index, n 2 was measured at 1064 nm using the Z-scan technique. Values of 1.58 ≤ n0 ≤ 1.88, n2 ≥ 10-15 cm 2/W and NL absorption coefficient, α2 ≤ 0.01 cm/GW, were determined. The linear and NL refractive indices increase with the increase of the Bi2O3 concentration. The large values of n0 and n2, as well as the very small α2, indicate that these materials have large potential for all-optical switching applications in the near-infrared. © 2012 American Chemical Society.
Resumo:
We report on the fabrication of novel lead-germanate glasses and fibers. We have characterized these glasses in terms of their thermal properties, Raman spectra and refractive indices (both linear and nonlinear) and present them as viable alternatives to tellurite glasses for applications requiring highly nonlinear optical fibers. © 2013 Optical Society of America.
Resumo:
Pós-graduação em Ciências Farmacêuticas - FCFAR
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência dos Materiais - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)