979 resultados para heating


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bond strength of various metal multilayers produced by cold rolling of metal foils with different thermal conductivity was investigated. Results indicated that under the same conditions of deformation and surface preparation, the metallic multilayer system with low thermal conductivity exhibited relative high bond strength while high thermal conductivity metal system may fail to be roll-bonded together. The relationship between the deformation-induced localized heating and the bond strength were discussed. The deformation-induced localized heating in the low thermal conductivity metal multilayer systems may provide opportunities for achieving a successful accumulative roll bonding or a “cold roll/heat treatment/cold roll” process to synthesize metallic multilayer materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the automotive industry, press production rates often need to be reduced in order to minimize tool wear issues and successfully stamp advanced high strength steels. This indicates that heating affects may be important. This paper examines friction and deformational heating at the die radius during sheet metal stamping, using finite element analysis. The results show that high temperatures, of up to 130°C, can occur at the die radius surface. Such behavior has not been previously reported in the literature, for what is expected to be ‘cold’ sheet metal stamping conditions. It will be shown that the temperature rise is due to the increased contact stresses and increased plastic work, associated with stamping AHSS. Consequently, new insights into the local contact conditions in sheet metal stamping were obtained. The outcomes of this work may impact the wear models and tests employed for future tool wear analyses in sheet metal stamping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thirty years ago in Australia, there was a significant research, development and demonstration programme in solar industrial process heating (SIPH). This activity was led principally by the Commonwealth Science and Industrial Research Organisation, the country’s main scientific research body. Other state government bodies also funded demonstration projects. Today, there is very little SIPH activity at any level in Australia. The contrast with the progress in other renewable energy technologies like wind and solar photovoltaic systems is striking. While the implementation of these technologies has progressed, SIPH has gone backwards. If Australia is to decarbonise its economy at the rate required, a massive deployment of solar thermal technology in those industries which use large quantities of low temperature hot water is also required. Recent developments nationally and internationally may rekindle new applications of solar thermal energy use by industry. This paper reviews the past achievements in SIPH in Australia and describes the lessons learned in order to better prepare for any new wave of SIPH activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the effect of both the mixing technique and heating rate during cure on the dispersion of montmorillonite (MMT) clay in an epoxy resin. The combination of sonication and using a 10. °C/min heating rate during cure was found to facilitate the dispersion of nanoclay in epoxy resin. These processing conditions provided a synergistic effect, making it possible for polymer chains to penetrate in-between clay galleries and detach platelets from their agglomerates. As the degree of dispersion was enhanced, the flexural modulus and strength properties were found to decrease by 15% and 40%, respectively. This is thought to be due to individual platelets fracturing in the nanocomposite. Complementary techniques including X-ray diffraction (XRD), small angle X-ray scattering (SAXS), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM) and optical microscopy were essential to fully characterise localised and spatial regions of the clay morphologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Latest trends in waste heat recovery include systems like Thermo Electric Generation (TEG), Rankine cycle, and active warm up systems. The advantages and disadvantages of different approaches are critically discussed and compared with a novel and effective oil heating system that can deliver between 7% and 12% reductions of CO2 emissions and fuel consumption. The comparison includes the expected CO2 and fuel saving potential related to the legal drive cycle as well as real world driving, effects on regulated exhaust emissions, utilisation of resources, maintenance and service, vehicle performance, comfort, noise, and durability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Latest trends in waste heat recovery include systems like Thermo Electric Generation (TEG), Rankine cycle, and active warm up systems. The advantages and disadvantages of different approaches are critically discussed and compared with a novel and effective oil heating system that can deliver between 7% and 12% reductions of CO2 emissions and fuel consumption. The comparison includes the expected CO2 and fuel saving potential related to the legal drive cycle as well as real world driving, effects on regulated exhaust emissions, utilisation of resources, maintenance and service, vehicle performance, comfort, noise, and durability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shape conversions of silver nanoplates were realized by heating and subsequent light irradiation. The initial silver nanoprisms were transformed into silver nanodisks gradually in the process of heating, which was possibly achieved through dissolving and readsorption of silver atoms on the surface of silver nanoplates. Subsequently, under light irradiation, the heating induced silver nanodisks were reversed to silver nanoprisms in the same solution. The dissolved oxygen was found to play a pivotal role in the shape conversion from nanoprism to nanodisk. In addition to heating, deionized water could induce the shape conversion of silver nanoplates when it was added to precipitate of the initial silver nanoprisms after centrifugation. Citrate in solution is essential to the photoinduced shape conversion process. Transmission electron microscopy (TEM) and extinction spectroscopy results demonstrated that localized surface plasmon resonance (LSPR) properties of silver nanoplates were effectively tuned through shape conversion.