822 resultados para green lacewing
Resumo:
The objective of this study was to investigate the spatial patterns in green sea urchin (Strongylocentrotus droebachiensis) density off the coast of Maine, using data from a fishery-independent survey program, to estimate the exploitable biomass of this species. The dependence of sea urchin variables on the environment, the lack of stationarity, and the presence of discontinuities in the study area made intrinsic geostatistics inappropriate for the study; therefore, we used triangulated irregular networks (TINs) to characterize the large-scale patterns in sea urchin density. The resulting density surfaces were modified to include only areas of the appropriate substrate type and depth zone, and were used to calculate total biomass. Exploitable biomass was estimated by using two different sea urchin density threshold values, which made different assumptions about the fishing industry. We observed considerable spatial variability on both small and large scales, including large-scale patterns in sea urchin density related to depth and fishing pressure. We conclude that the TIN method provides a reasonable spatial approach for generating biomass estimates for a fishery unsuited to geostatistics, but we suggest further studies into uncertainty estimation and the selection of threshold density values.
Resumo:
Assessing the status of widely distributed marine species can prove difficult because virtually every sampling technique has assumptions, limitations, and biases that affect the results of the study. These biases often are overlooked when the biological and nonbiological implications of the results are discussed. In a recent review, Thompson (1988) used mostly unpublished population census data derived from studies conducted by the National Marine Fisheries Service (NMFS) to draw conclusions about the status of Kemp's ridley, Lepidochelys kempi; Atlantic coast green turtles, Chelonia mydas; and the loggerhead sea turtle, Caretta caretta.
Resumo:
The green sea urchin (Strongylocentrotus droebachiensis) is important to the economy of Maine. It is the state’s fourth largest fishery by value. The fishery has experienced a continuous decline in landings since 1992 because of decreasing stock abundance. Because determining the age of sea urchins is often difficult, a formal stock assessment demands the development of a size-structured population dynamic model. One of the most important components in a size-structured model is a growth-transition matrix. We developed an approach for estimating the growth-transition matrix using von Bertalanffy growth parameters estimated in previous studies of the green sea urchin off Maine. This approach explicitly considers size-specific variations associated with yearly growth increments for these urchins. The proposed growth-transition matrix can be updated readily with new information on growth, which is important because changes in stock abundance and the ecosystem will likely result in changes in sea urchin key life history parameters including growth. This growth-transition matrix can be readily incorporated into the size-structured stock assessment model that has been developed for assessing the green sea urchin stock off Maine.
Resumo:
For the nutritional evaluation of green seaweed Ulva fasciata, a feeding trial was performed in albino rats. The results indicated that the 20% replacement of seaweed U. fasciata instead of carrot or lettuce in rad diet causes no harmful effects, as evident by a non-significant change in blood constituents and serum enzyme levels. The weight gain observed in rats with U. fasciata diet was same as that of control diet. The true digestibility ratio of U. fasciata was 80.20% with carrot and 83.4% with lettuce. The data suggest that the green seaweed U. fasciata could be used as an alternative dietary component in animal fodder.
Resumo:
Green mussel (Perna viridis) and sea water from their natural beds on the coastal areas of Porto Novo were studied between April and August 1996 for their bacterial quality. Water samples from the beds were also analysed for their physico-chemical parameters. The total bacterial count of mussels from natural beds as well as bed waters ranged 10³ organisms per gram of mussel meat suspension and per milliliter of sea water. The faecal coliforms were found to be within the permissible limits. Pathogenic bacteria such as Salmonella spp., Streptococcus spp. and Staphylococcus spp. were absent. The variations in pH, temperature, salinity and dissolved oxygen of the seawater samples were insignificant. The mussels were subjected to depuration by different methods among which chlorination was found to be most effective.