998 resultados para golfinho-pintado-do-Atlântico


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento, História (História Contemporânea), 29 de Novembro de 2013, Universidade dos Açores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado, Estudos Integrados dos Oceanos, 11 de Outubro 2013, Universidade dos Açores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado, Biodiversidade e Ecologia Insular, 29 de Maio de 2013, Universidade dos Açores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento, Ciências do Mar (Ecologia Marinha)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento, Ciências do Mar (Biologia Marinha)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado em Vulcanologia e Riscos Geológicos

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Na sociedade atual, completamente dominada pela constante procura de informação, faz todo o sentido recorrer a formas organizadas de apresentar os dados recolhidos que permitam uma leitura rápida e acessível. As matrizes, pela sua estrutura, possibilitam este tipo de abordagem com vista ao tratamento de uma grande quantidade de informação. (...) Poucas áreas da Matemática sofreram nos últimos 30 anos uma evolução tão significativa como a Teoria de Matrizes. Isto deve-se ao desenvolvimento de computadores cada vez mais potentes do ponto de vista da capacidade computacional, bem como à introdução de métodos matriciais em diferentes áreas de aplicação. Atualmente, a Teoria de Matrizes é utilizada com frequência para modelar muitos fenómenos do mundo real. Mas quando é que surgiu este ramo da Matemática? (...) Embora este ramo da Matemática tenha sido desenvolvido a partir de meados do século XIX, conceitos elementares de matrizes remontam ao período anterior ao nascimento de Cristo, uma vez que os chineses aplicavam métodos matriciais para resolver certos sistemas de equações. Os quadrados mágicos constituem outro exemplo de aplicação rudimentar do conceito de matriz. As lendas sugerem que os quadrados mágicos são originários da China, tendo sido referidos pela primeira vez num manuscrito do tempo do imperador Yu, cerca de 2200 a. C. (...) Em 1514, Albrecht Dürer, conhecido artista da Renascença, pintou um quadro intitulado "Melancolia", onde figura um quadrado mágico, precisamente de ordem 4 (figura 2). De notar que os dois números centrais da última linha do quadrado permitem ler "1514", o ano em que o quadro foi pintado. O leitor pode comprovar que a soma dos números de cada linha, de cada coluna e de cada uma das duas diagonais desse quadrado é sempre igual a 34, a constante mágica. Além disso, 34 é a soma dos números dos cantos (16+13+4+1=34) e do quadrado central 2x2 (10+11+6+7=34). (...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este texto, integrado num manual de leitura para o ensino do português nos EUA, fala do papel relevante que os Açores têm desempenhado na história do mundo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Retomamos a nossa viagem à descoberta de padrões pelas calçadas da Ilha de S. Miguel. A próxima paragem é no Miradouro da Ponta do Escalvado, localizado no lugar da Várzea, freguesia dos Ginetes, concelho de Ponta Delgada. [...] Mas qual o particular interesse da calçada do Miradouro da Ponta do Escalvado? Mostramos, em seguida, que este é um exemplo de um passeio onde podemos encontrar, em simultâneo, os quatro tipos possíveis de simetria... o que nem sempre acontece. [...] Existem também outros tipos de simetria, aparentemente menos percetíveis. Na imagem 3, ilustra-se o conceito de simetria de rotação. Para tal, temos que fixar um ponto: o centro de rotação. Basicamente, a ideia é a de rodar a figura em torno do ponto fixo segundo um ângulo com uma determinada amplitude. Respeita-se, em geral, o sentido contrário aos ponteiros do relógio, designado por sentido anti-horário ou sentido positivo. Se, ao rodarmos a figura segundo uma amplitude inferior a 360º, ela coincidir com a sua posição inicial, dizemos que tem uma simetria de rotação: a figura inicial e a que resultou desse movimento ficam completamente sobrepostas, não se conseguem distinguir. Dizemos que o movimento em causa fixou globalmente a figura ou que a deixou invariante. [...].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

No artigo "The bad and the beautiful", publicado no Finantial Times em janeiro de 2013, Edwin Heathcote realça alguns aspetos que tornam as cidades mais sedutoras e elege as oito mais belas atrações citadinas a nível mundial. O autor coloca o impacto causado pelos padrões ondulantes da calçada do Rossio (calçada do "Mar Largo"), em Lisboa, a par com outros "momentos belos" desencadeados, por exemplo, ao olhar para o grande canal de Veneza, para os apartamentos vitorianos de Nova Iorque ou para a iluminação noturna produzida pelos mercados de rua de Mongkok, em Hong Kong. Sem dúvida que vale a pena dedicar um pouco do nosso tempo a apreciar a bonita calçada portuguesa, uma verdadeira atração mundial. [...] Mas como podemos identificar simetrias no dia a dia? Neste artigo, abordaremos dois dos tipos mais comuns de simetria: a simetria de rotação e a simetria de espelho ou de reflexão. Com o intuito de exemplificar estes tipos de simetria, analisam-se duas rosáceas em calçada, localizadas no Campo de S. Francisco em Ponta Delgada [...].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(...) Explora-se neste artigo um exemplo deste tipo de números de identificação com algarismo de controlo: o número de série das notas de Euro. (...) Destacam-se várias novidades nas novas notas de 5 e 10 Euros: a marca de água e a banda holográfica passam a incluir um retrato de Europa, a figura da mitologia grega que dá nome a esta segunda série de notas de Euro; (...) O número de série, que nas notas da primeira série aparecia duas vezes no verso da nota, passa a constar nas novas notas uma só vez (no canto superior direito). Os seus 6 últimos algarismos aparecem também na vertical, sensivelmente a meio das novas notas. Ao todo, o número de série é composto por 12 caracteres: 1 letra e 11 algarismos nas notas antigas e 2 letras e 10 algarismos nas notas novas. (...) A título de exemplo, verifiquemos se é válido o número de série: PA0626068043. Substituindo P por 8 e A por 2, obtemos o número 820626068043. Se adicionarmos todos os seus algarismos, temos s=45, que é um múltiplo de 9. Um método alternativo consiste em adicionar sucessivamente os algarismos, retirando “noves” sempre que possível. No final deve obter-se 0 (significa que o número de série é um múltiplo de 9, ou seja, que o resto da sua divisão por 9 é zero). (...) O leitor pode mesmo tirar proveito desta informação para ganhar algumas notas de Euro. Basta fazer uma aposta com o dono de uma nota, desafiando-o a tapar o último algarismo do número de série. Se conseguir “adivinhar” qual é esse algarismo, a nota será sua! Só tem que recordar os valores que são atribuídos às letras e aplicar um dos dois métodos indicados. (...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Os códigos de barras são exemplos de sistemas de identificação com algarismo de controlo, que tem como objetivo verificar se foi cometido pelo menos um erro de escrita, leitura ou transmissão da informação. Nos códigos de barras, o algarismo de controlo é o algarismo das unidades (primeiro algarismo da direita). Os restantes algarismos de um código de barras contêm informação específica. Por exemplo, os três primeiros algarismos da esquerda identificam sempre o país de origem (com a exceção dos códigos de barras dos livros, que apresentam o prefixo 978 ou 979, e dos códigos de uso interno das superfícies comerciais como, por exemplo, para os artigos embalados na padaria ou na peixaria de um supermercado, que começam por 2). Seguem-se alguns exemplos: 300-379 (França e Mónaco); 400-440 (Alemanha); 500-509 (Reino Unido); 520 (Grécia); 539 (Irlanda); 540-549 (Bélgica e Luxemburgo); 560 (Portugal); 690-695 (China); 760-769 (Suíça); 789-790 (Brasil); 840-849 (Espanha e Andorra); 888 (Singapura); 958 (Macau). Observe-se que os países com uma maior produção têm à sua disposição mais de um prefixo de três algarismos. (...) Para se verificar se o número do código de barras está correto, procede-se da seguinte forma (...) obtêm-se, respetivamente, as somas I e P; por fim, calcula-se o valor de S=I+3xP que deverá ser um múltiplo de 10 (ou seja, o seu algarismo das unidades deverá ser 0). (...) E que relação existe entre as barras e os algarismos? Ao olhar com atenção para um código de barras EAN-13, reparamos que os 13 algarismos são distribuídos da seguinte forma: o primeiro algarismo surge isolado à esquerda das barras, enquanto que os restantes surgem por baixo destas, divididos em dois grupos de seis algarismos separados por barras geralmente mais compridas do que as restantes: três barras nas laterais (preto-branco-preto) e cinco barras ao centro (branco-preto-branco-preto-branco). As restantes barras são mais curtas e codificam os 12 algarismos (indiretamente, também codificam o algarismo da esquerda). (...) A representação dos algarismos por barras brancas e pretas respeita alguns princípios como os de paridade e simetria, pelo que um algarismo não é sempre representado da mesma forma. Este aspeto permite que um código de barras possa ser lido por um leitor ótico sem qualquer ambiguidade, quer esteja na posição normal ou "de pernas para o ar". (...) Recentemente surgiu uma nova geração de códigos de barras designados por códigos de resposta rápida ou códigos QR (do inglês Quick Response). Certamente o leitor já os viu em cartazes publicitários ou em revistas. (...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências do Mar, especialidade em Ecologia Marinha.