841 resultados para glucose tolerance test
Resumo:
Trans-10,cis-12 conjugated linoleic acid (CLA) supplementation causes milk fat depression in dairy cows, but CLA effects on glucose metabolism are not clear. The objective of the study was to investigate glucose metabolism, especially endogenous glucose production (eGP) and glucose oxidation (GOx), as well as hepatic genes involved in endogenous glucose production in Holstein cows supplemented either with 50 g of rumen-protected CLA (9% trans-10,cis-12 and 10% cis-9,trans-11; CLA; n=10) or 50 g of control fat (24% C18:2; Ctrl; n=10) from wk 2 before parturition to wk 9 of lactation. Animal performance data were recorded and blood metabolites and hormones were taken weekly from 2 wk before to 12 wk after parturition. During wk 3 and 9 after parturition, glucose tolerance tests were performed and eGP and GOx were measured by [U-(13)C] glucose infusion. Liver biopsies were taken at the same time to measure total fat and glycogen concentrations and gene expression of pyruvate carboxylase, cytosolic phosphoenolpyruvate carboxykinase, glucose-6-phosphatase, and carnitine palmitoyl-transferase 1. Conjugated linoleic acid feeding reduced milk fat, but increased milk lactose output; milk yield was higher starting 5 wk after parturition in CLA-fed cows than in Ctrl-fed cows. Energy balance was more negative during CLA supplementation, and plasma concentrations of glucose were higher immediately after calving in CLA-fed cows. Conjugated linoleic acid supplementation did not affect insulin release during glucose tolerance tests, but reduced eGP in wk 3, and eGP and GOx increased with time after parturition. Hepatic gene expression of cytosolic phosphoenolpyruvate carboxykinase tended to be lower in CLA-fed cows than in Ctrl-fed cows. In spite of lower eGP in CLA-fed cows, lactose output and plasma glucose concentrations were greater in CLA-fed cows than in Ctrl-fed cows. This suggests a CLA-related glucose sparing effect most likely due to lower glucose utilization for milk fat synthesis and probably because of a more efficient whole-body energy utilization in CLA-fed cows.
Resumo:
Objective. The influence of an exercise programme performed by healthy pregnant women on maternal glucose tolerance was studied. Study design. A physical activity (PA, land/aquatic activities) programme during the entire pregnancy (three sessions per week) was conducted by a qualified instructor. 83 healthy pregnant women were randomly assigned to either an exercise group (EG, n=40) or a control (CG, n=43) group. 50 g maternal glucose screen (MGS), maternal weight gain and several pregnancy outcomes were recorded. Results. Significant differences were found between study groups on the 50 g MGS. Values corresponding to the EG (103.8±20.4 mg/dl) were better than those of the CG (126.9±29.5 mg/dl), p=0.000. In addition, no differences in maternal weight gain and no cases of gestational diabetes in EG versus 3 in CG (7%) (p>0.05) were found. Conclusion. A moderate PA programme performed during pregnancy improves levels of maternal glucose tolerance.
Resumo:
Mice with a targeted mutation of the gastric inhibitory polypeptide (GIP) receptor gene (GIPR) were generated to determine the role of GIP as a mediator of signals from the gut to pancreatic β cells. GIPR−/− mice have higher blood glucose levels with impaired initial insulin response after oral glucose load. Although blood glucose levels after meal ingestion are not increased by high-fat diet in GIPR+/+ mice because of compensatory higher insulin secretion, they are significantly increased in GIPR−/− mice because of the lack of such enhancement. Accordingly, early insulin secretion mediated by GIP determines glucose tolerance after oral glucose load in vivo, and because GIP plays an important role in the compensatory enhancement of insulin secretion produced by a high insulin demand, a defect in this entero-insular axis may contribute to the pathogenesis of diabetes.
Resumo:
The ob/ob mouse is genetically deficient in leptin and exhibits both an obese and a mild non-insulin-dependent diabetic phenotype. To test the hypothesis that correction of the obese phenotype by leptin gene therapy will lead to the spontaneous correction of the diabetic phenotype, the ob/ob mouse was treated with a recombinant adenovirus expressing the mouse leptin cDNA. Treatment resulted in dramatic reductions in both food intake and body weight, as well as the normalization of serum insulin levels and glucose tolerance. The subsequent diminishment in serum leptin levels resulted in the rapid resumption of food intake and a gradual gain of body weight, which correlated with the gradual return of hyperinsulinemia and insulin resistance. These results not only demonstrated that the obese and diabetic phenotypes in the adult ob/ob mice are corrected by leptin gene treatment but also provide confirming evidence that body weight control may be critical in the long-term management of non-insulin-dependent diabetes mellitus in obese patients.
Resumo:
ATP-sensitive K+ (KATP) channels regulate many cellular functions by linking cell metabolism to membrane potential. We have generated KATP channel-deficient mice by genetic disruption of Kir6.2, which forms the K+ ion-selective pore of the channel. The homozygous mice (Kir6.2−/−) lack KATP channel activity. Although the resting membrane potential and basal intracellular calcium concentrations ([Ca2+]i) of pancreatic beta cells in Kir6.2−/− are significantly higher than those in control mice (Kir6.2+/+), neither glucose at high concentrations nor the sulfonylurea tolbutamide elicits a rise in [Ca2+]i, and no significant insulin secretion in response to either glucose or tolbutamide is found in Kir6.2−/−, as assessed by perifusion and batch incubation of pancreatic islets. Despite the defect in glucose-induced insulin secretion, Kir6.2−/− show only mild impairment in glucose tolerance. The glucose-lowering effect of insulin, as assessed by an insulin tolerance test, is increased significantly in Kir6.2−/−, which could protect Kir6.2−/− from developing hyperglycemia. Our data indicate that the KATP channel in pancreatic beta cells is a key regulator of both glucose- and sulfonylurea-induced insulin secretion and suggest also that the KATP channel in skeletal muscle might be involved in insulin action.
Resumo:
Study objective: Low birth weight predicts cardiovascular disease in adulthood, and one possible explanation is that children with lower birth weight consume more fat than those born heavier. Therefore, the objective of this study was to investigate associations between birth weight and childhood diet, and in particular, to test the hypothesis that birth weight is inversely related to total and saturated fat intake. Design: Prospective cohort study. Setting: South west England. Participants: A subgroup of children enrolled in the Avon longitudinal study of parents and children, with data on birth weight and also diet at ages 8, 18, 43 months, and 7 years ( 1152, 998, 848, and 771 children respectively). Main results: Associations between birth weight and diet increased in strength from age 8 to 43 months, but had diminished by age 7 years. Fat, saturated fat, and protein intakes were inversely, and carbohydrate intake was positively associated with birth weight at 43 months of age, after adjusting for age, sex, and energy intake. After adjustment for other confounders, all associations were weakened, although there was still a suggestion of a relation with saturated fat ( -0.48 (95% CI -0.97, 0.02) g/day per 500 g increase in birth weight. Similar patterns were seen in boys and girls separately, and when the sample was restricted to those with complete data at all ages. Conclusions: A small inverse association was found between birth weight and saturated fat intake in children at 43 months of age but this was not present at 7 years of age. This study therefore provides little evidence that birth weight modifies subsequent childhood diet.
Resumo:
C-terminal acylation of Lys(37) with myristic (MYR; tetradecanoic acid), palmitic (PAL; hexadecanoic acid) and stearic (octadecanoic acid) fatty acids with or without N-terminal acetylation was employed to develop long-acting analogues of the glucoregulatory hormone, glucose-dependent insulinotropic polypeptide (GIP). All GIP analogues exhibited resistance to dipeptidylpeptidase-IV (DPP-IV) and significantly improved in vitro cAMP production and insulin secretion. Administration of GIP analogues to ob/ob mice significantly lowered plasma glucose-GIP(Lys(37)MYR), N-AcGIP(Lys(37)MYR) and GIP(Lys(37)PAL) increased plasma insulin concentrations. GIP(Lys(37)MYR) and N-AcGIP(Lys(37)MYR) elicited protracted glucose-lowering effects when administered 24h prior to an intraperitoneal glucose load. Daily administration of GIP(Lys(37)MYR) and N-AcGIP(Lys(37)MYR) to ob/ob mice for 24 days decreased glucose and significantly improved plasma insulin, glucose tolerance and beta-cell glucose responsiveness. Insulin sensitivity, pancreatic insulin content and triglyceride levels were not changed. These data demonstrate that C-terminal acylation particularly with myristic acid provides a class of stable, longer-acting forms of GIP for further evaluation in diabetes therapy.
Resumo:
Glucose-dependent insulinotropic polypeptide (GIP) is a physiological insulin releasing peptide. We have developed two novel fatty acid derivatized GIP analogues, which bind to serum albumin and demonstrate enhanced duration of action in vivo. GIP(Lys16PAL) and GIP(Lys37PAL) were resistant to dipeptidyl peptidase IV (DPP IV) degradation. In vitro studies demonstrated that GIP analogues retained their ability to activate the GIP receptor through production of cAMP and to stimulate insulin secretion. Intraperitoneal administration of GIP analogues to obese diabetic (ob/ob) mice significantly decreased the glycemic excursion and elicited increased and prolonged insulin responses compared to native GIP. A protracted glucose-lowering effect was observed 24 h following GIP(Lys37PAL) administration. Once a day injection for 14 days decreased nonfasting glucose, improved glucose tolerance, and enhanced the insulin response to glucose. These data demonstrate that fatty acid derivatized GIP peptides represent a novel class of long-acting stable GIP analogues for therapy of type 2 diabetes. © 2006 American Chemical Society.
Resumo:
Background and aims: Glucagon-like peptide-1 (GLP-1) receptor agonists improve islet function and delay gastric emptying in subjects with type 2 diabetes mellitus. We evaluated 2-hour glucose, glucagon and insulin changes following a standardized mixed-meal tolerance test before and after 24 weeks of treatment with the once-daily prandial GLP-1 receptor agonist lixisenatide (approved for a therapeutic dose of 20 μg once daily) in six randomized, placebo-controlled studies within the lixisenatide Phase III GetGoal programme. In the studies, the mixed-meal test was conducted before and after: (1) lixisenatide treatment in patients insufficiently controlled despite diet and exercise (GetGoal-Mono), (2) lixisenatide treatment in combination with oral antidiabetic drugs (OADs) (GetGoal-M and GetGoal-S), or (3) lixisenatide treatment in combination with basal insulin ± OAD (GetGoal-Duo 1, GetGoal-L and GetGoal-L-Asia).Materials and methods: A meta-analysis was performed (lixisenatide n=1124 vs placebo n=707) combining ANCOVA least squares (LS) mean values using an inverse variance weighted analysis. Results: Lixisenatide significantly reduced 2-hour postprandial glucose from baseline (LS mean difference vs placebo: -4.9 mmol/L, p<0.0001, Figure) and glucose excursions (LS mean difference vs placebo: -4.5 mmol/L, p<0.0001). As measured in two studies, lixisenatide also reduced postprandial glucagon (LS mean difference vs placebo: -19.0 ng/L, p<0.0001) and insulin (LS mean difference vs placebo: -64.8 pmol/L, p<0.0001), although the glucagon/insulin ratio was increased (LS mean difference vs placebo: 0.15, p=0.02) compared with placebo. Conclusion: The results show that lixisenatide potently reduces the glucose excursion after meal ingestion in subjects with type 2 diabetes, in association with marked reductions in glucagon and insulin levels. It is suggested that diminished glucagon secretion and slower gastric emptying contribute to reduced hepatic glucose production and delayed glucose absorption, enabling postprandial glycaemia to be controlled with less demand on beta-cell insulin secretion. Clinical Trial Registration Number: NCT00688701; NCT00712673; NCT00713830; NCT00975286; NCT00715624; NCT00866658 Supported by: Sanofi
Resumo:
INTRODUCCIÓN: Si se valora a tiempo la Sensibilidad a la insulina, se evitara padecer diabetes tipo 2; en los adultos mayores hay cambios como el aumento de tejido adiposo y sarcopenia, relacionados con disminución de la sensibilidad a la insulina. OBJETIVO: Determinar la sensibilidad a la insulina mediante la prueba de tolerancia oral a la glucosa en la población adulta mayor del cantón Cuenca, en el año 2015. METODOLOGÍA: Estudio descriptivo en 120 adultos mayores del cantón Cuenca; 60 casos con síndrome metabólico según el criterio ATP III y 60 casos sin síndrome metabólico. Se trata de una muestra no probabilística por conveniencia debido al costo de las pruebas de laboratorio. Se tomaron dos muestras de sangre una en ayunas y otra postprandial y se dosifico glucosa e insulina. Los datos fueron analizados en SPSS 22, Excel empleando frecuencias, porcentajes, medidas de tendencia central como mediana, promedio, medidas de dispersión, desvío stándar. RESULTADOS: El 39,2 % de adultos mayores presentó insulinemia postprandial alterada. Según el método HOMA-IR el 42 % presenta baja sensibilidad a la insulina y según el método QUICKI el 91,7 % presenta sensibilidad disminuida a la insulina. La baja sensibilidad a la insulina según género, edad y estado civil no fue significativa; en cambio con el IMC elevado se tiene más probabilidad de padecer insulinorresistencia (p=0,03) .Siendo más significativo los pacientes con síndrome metabólico aumenta dos veces la probabilidad de padecer insulinorresistencia (p=0.02, OR 2.3 IC 95% 1.09 – 4.85)
Resumo:
INTRODUCCIÓN: Si se valora a tiempo la Sensibilidad a la insulina, se evitara padecer diabetes tipo 2; en los adultos mayores hay cambios como el aumento de tejido adiposo y sarcopenia, relacionados con disminución de la sensibilidad a la insulina. OBJETIVO: Determinar la sensibilidad a la insulina mediante la prueba de tolerancia oral a la glucosa en la población adulta mayor del cantón Cuenca, en el año 2015. METODOLOGÍA: Estudio descriptivo en 120 adultos mayores del cantón Cuenca; 60 casos con síndrome metabólico según el criterio ATP III y 60 casos sin síndrome metabólico. Se trata de una muestra no probabilística por conveniencia debido al costo de las pruebas de laboratorio. Se tomaron dos muestras de sangre una en ayunas y otra postprandial y se dosifico glucosa e insulina. Los datos fueron analizados en SPSS 22, Excel empleando frecuencias, porcentajes, medidas de tendencia central como mediana, promedio, medidas de dispersión, desvío stándar. RESULTADOS: El 39,2 % de adultos mayores presentó insulinemia postprandial alterada. Según el método HOMA-IR el 42 % presenta baja sensibilidad a la insulina y según el método QUICKI el 91,7 % presenta sensibilidad disminuida a la insulina. La baja sensibilidad a la insulina según género, edad y estado civil no fue significativa; en cambio con el IMC elevado se tiene más probabilidad de padecer insulinorresistencia (p=0,03) .Siendo más significativo los pacientes con síndrome metabólico aumenta dos veces la probabilidad de padecer insulinorresistencia (p=0.02, OR 2.3 IC 95% 1.09 – 4.85).
Resumo:
Subtle structural differencescan be observed in the islets of Langer-hans region of microscopic image of pancreas cell of the rats having normal glucose tolerance and the rats having pre-diabetic(glucose intolerant)situa-tions. This paper proposes a way to automatically segment the islets of Langer-hans region fromthe histological image of rat's pancreas cell and on the basis of some morphological feature extracted from the segmented region the images are classified as normal and pre-diabetic.The experiment is done on a set of 134 images of which 56 are of normal type and the rests 78 are of pre-diabetictype. The work has two stages: primarily,segmentationof theregion of interest (roi)i.e. islets of Langerhansfrom the pancreatic cell and secondly, the extrac-tion of the morphological featuresfrom the region of interest for classification. Wavelet analysis and connected component analysis method have been used for automatic segmentationof the images. A few classifiers like OneRule, Naïve Bayes, MLP, J48 Tree, SVM etc.are used for evaluation among which MLP performed the best.
Resumo:
Patients with idiopathic small fibre neuropathy (ISFN) have been shown to have significant intraepidermal nerve fibre loss and an increased prevalence of impaired glucose tolerance (IGT). It has been suggested that the dysglycemia of IGT and additional metabolic risk factors may contribute to small nerve fibre damage in these patients. Twenty-five patients with ISFN and 12 aged-matched control subjects underwent a detailed evaluation of neuropathic symptoms, neurological deficits (Neuropathy deficit score (NDS); Nerve Conduction Studies (NCS); Quantitative Sensory Testing (QST) and Corneal Confocal Microscopy (CCM)) to quantify small nerve fibre pathology. Eight (32%) patients had IGT. Whilst all patients with ISFN had significant neuropathic symptoms, NDS, NCS and QST except for warm thresholds were normal. Corneal sensitivity was reduced and CCM demonstrated a significant reduction in corneal nerve fibre density (NFD) (Pb0.0001), nerve branch density (NBD) (Pb0.0001), nerve fibre length (NFL) (Pb0.0001) and an increase in nerve fibre tortuosity (NFT) (Pb0.0001). However these parameters did not differ between ISFN patients with and without IGT, nor did they correlate with BMI, lipids and blood pressure. Corneal confocal microscopy provides a sensitive non-invasive means to detect small nerve fibre damage in patients with ISFN and metabolic abnormalities do not relate to nerve damage.
Resumo:
Objective: To document change in prevalence of obesity, diabetes and other cardiovascular diease (CVD) risk factors, and trends in dietary macronutrient intake, over an eight-year period in a rural Aboriginal community in central Australia. Design: Sequential cross-sectional community surveys in 1987, 1991 and 1995. Subjects: All adults (15 years and over) in the community were invited to participate. In 1987, 1991 and 1995, 335 (87% of eligible adults), 331 (76%) and 304 (68%), respectively, were surveyed. Main outcome measures: Body mass index and waist : hip ratio; blood glucose level and glucose tolerance; fasting total and high density lipoprotein (HDL) cholesterol and triglyceride levels; and apparent dietary intake (estimated by the store turnover method). Intervention: A community-based nutrition awareness and healthy lifestyle program, 1988-1990. Results: At the eight-year follow-up, the odds ratios (95% CIs) for CVD risk factors relative to baseline were obesity, 1.84 (1.28-2.66); diabetes, 1.83 (1.11-3.03); hypercholesterolaemia, 0.29 (0.20-0.42); and dyslipidaemia (high triglyceride plus low HDL cholesterol level), 4.54 (2.84-7.29). In younger women (15-24 years), there was a trebling in obesity prevalence and a four- to fivefold increase in diabetes prevalence. Store turnover data suggested a relative reduction in the consumption of refined carbohydrates and saturated fats. Conclusion: Interventions targeting nutritional factors alone are unlikely to greatly alter trends towards increasing prevalences of obesity and diabetes. In communities where healthy food choices are limited, the role of regular physical activity in improving metabolic fitness may also need to be emphasised.