861 resultados para glucose infusion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé Rôle du transporteur de glucose GLUT2 dans les mécanismes centraux de glucodétection impliqués dans le contrôle de la sécrétion du glucagon et de la prise alimentaire. Les mécanismes centraux de glucodétection jouent un rôle majeur dans le contrôle de l'homéostasie glucidique. Ces senseurs régulent principalement la sécrétion des hormones contre-régulatrices, la prise alimentaire et la dépense énergétique. Cependant, la nature cellulaire et le fonctionnement moléculaire de ces mécanismes ne sont encore que partiellement élucidés. Dans cette étude, nous avons tout d'abord mis en évidence une suppression de la stimulation de la sécrétion du glucagon et de la prise alimentaire en réponse à une injection intracérébroventriculaire (i.c.v.) de 2-déoxy-D-glucose (2-DG) chez les souris de fond génétique mixte et déficientes pour le gène glut2 (souris RIPG1xglut2-/-). De plus, chez ces souris, l'injection de 2-DG n'augmente pas l'activation neuronale dans l'hypothalamus et le complexe vagal dorsal. Nous avons ensuite montré que la ré-expression de GLUT2 dans les neurones des souris RIPG1xg1ut2-/- ne restaure pas la sécrétion du glucagon et la prise alimentaire en réponse à une injection i.c.v. de 2-DG. En revanche, l'injection de 2-DG réalisée chez les souris RIPG1xg1ut2-/- ré-exprimant le GLUT2 dans leurs astrocytes, stimule la sécrétion du glucagon et l'activation neuronale dans le complexe vagal dorsal mais n'augmente pas la prise alimentaire ni l'activation neuronale dans l'hypothalamus. L'ensemble de ces résultats démontre l'existence de différents mécanismes centraux de glucodétection dépendants de GLUT2. Les mécanismes régulant la sécrétion du glucagon sont dépendants de GLUT2 astrocytaire et pourraient être localisés dans le complexe vagal dorsal. L'implication des astrocytes dans ces mécanismes suggère un couplage fonctionnel entre les astrocytes et les neurones adjacents « sensibles au glucose ». Lors de cette étude, nous avons remarqué chez les souris RIPG1xg1ut2-/- de fond génétique pur C57B1/6, que seul le déclenchement de la prise alimentaire en réponse à l'injection i.p. ou i.c.v. de 2-DG est aboli. Ces données mettent en évidence que suivant le fond génétique de la souris, les mécanismes centraux de glucodétection impliqués dans la régulation de la sécrétion peuvent être indépendants de GLUT2. Summary. Role of transporter GLUT2 in central glucose sensing involved in the control of glucagon secretion and food intake. Central glucose sensors play an important role in the control of glucose homeostasis. These sensors regulate general physiological functions, including food intake, energy expenditure and hormones secretion. So far the cellular and molecular basis of central glucose detection are poorly understood. Hypoglycemia, or cellular glucoprivation by intraperitoneal injection of 2-deoxy¬glucose (2-DG) injection, elicit multiple glucoregulatory responses, in particular glucagon secretion and stimulation of feeding. We previously demonstrated that the normal glucagon response to insulin-induced hypoglycemia was suppressed in mice lacking GLUT2. This indicated the existence of extra-pancreatic, GLUT2-dependent, glucose sensors controllling glucagon secretion. Here, we have demonstrated that the normal glucagon and food intake responses to central glucoprivation, by intracerebroventricular (i.c.v.) injections of 2-DG, were suppressed in mice lacking GLUT2 (RIPG1xglut2-/- mice) indicating that GLUT2 plays a role in central glucose sensing units controlling secretion of glucagon and food intake. Whereas it is etablished that glucose responsive neurons change their firing rate in response to variations of glucose concentrations, the exact mechanism of glucose detection is not established. In particular, it has been suggested that astrocytic cells may be the primary site of glucose detection and that a signal is subsequently transmitted to neurons. To evaluate the respective role of glial and neuronal expression of GLUT2 in central glucodetection, we studied hypoglycemic and glucoprivic responses following cellular glucoprivation in RIPG1xglut2-/- mice reexpressing the transgenic GLUT2 specifially in their astrocytes (pGFAPG2xRIPG1xglut2-/- mice) or their neurons (pSynG2xRIPG1xglut2-/- mice). The increase of food intake after i.p. injection of 2-DG in control mice was not observed in the pGFAPG2xRIPG1xglut2-/- mice. Whereas a strong increase of glucagon secretion was observed in control and pGFAPG2xRIPG1xglut2-/- mice, not glucagonemic response was induced in pSynG2xRIPG1xglut2-/- mice. Our results show that GLUT2 reexpression in glial cells but not in neurons restored glucagon secretion and thus present a strong evidence that glucose detection and the control of glucagon secretion require a coupling between glial cells and neurons. Furthermore, these results show the existence of differents glucose sensors in CNS. Résumé tout public. Rôle du transporteur de glucose GLUT2 dans les mécanismes centraux de glucodétection impliqués dans le contrôle de la sécrétion du glucagon et de la prise alimentaire. Chez les mammifères, en dépit des grandes variations dans l'apport et l'utilisation du glucose, la glycémie est maintenue à une valeur relativement constante d'environ 1 g/l. Cette régulation est principalement sous le contrôle de deux hormones produites par le pancréas l'insuline et le glucagon. A la suite d'un repas, la détection de l'élévation de la glycémie par le pancréas permet la libération pancréatique de l'insuline dans le sang. Cette hormone va alors permettre le stockage dans le foie du glucose sanguin en excès et diminuer ainsi la glycémie. Sans insuline, le glucose s'accumule dans le sang. On parle alors d'hyperglycémie chronique. Cette situation est caractéristique du diabète et augmente les risques de maladies cardiovasculaires. A l'inverse, lors d'un jeûne, la détection de la diminution de la glycémie par le cerveau permet le déclenchement de la prise alimentaire et stimule la sécrétion de glucagon par le pancréas. Le glucagon va alors permettre la libération dans le sang du glucose stocké par le foie. Les effets du glucagon et de la prise de nourriture augmentent ainsi les concentrations sanguines de glucose pour empêcher une diminution trop importante de la glycémie. Une hypoglycémie sévère peut entraîner un mauvais fonctionnement du cerveau allant jusqu'à des lésions cérébrales. Contrairement aux mécanismes pancréatiques de détection du glucose, les mécanismes de glucodétection du cerveau ne sont encore que partiellement élucidés. Dans le laboratoire, nous avons observé, chez les souris transgéniques n'exprimant plus le transporteur de glucose GLUT2, une suppression de la stimulation de la sécrétion du glucagon et du déclenchement de la prise alimentaire en réponse à une hypoglycémie, induite uniquement dans le cerveau. Dans le cerveau, le GLUT2 est principalement exprimé par les astrocytes, cellules gliales connues pour soutenir, nourrir et protéger les neurones. Nous avons alors ré-exprimé spécifiquement le GLUT2 dans les astrocytes des souris transgéniques et nous avons observé que seule la stimulation de la sécrétion du glucagon en réponse à l'hypoglycémie est restaurée. Ces résultats mettent en évidence que la sécrétion du glucagon et la prise alimentaire sont contrôlées par différents mécanismes centraux de glucodétection dépendants de GLUT2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was designed to determine whether glucocorticoids alter autoregulation of glucose production and fructose metabolism. Two protocols with either dexamethasone (DEX) or placebo (Placebo) were performed in six healthy men during hourly ingestion of[13C]fructose (1.33 mmol.kg-1.h-1) for 3 h. In both protocols, endogenous glucose production (EGP) increased by 8 (Placebo) and 7% (DEX) after fructose, whereas gluconeogenesis from fructose represented 82 (Placebo) and 72% (DEX) of EGP. Fructose oxidation measured from breath 13CO2 was similar in both protocols [9.3 +/- 0.7 (Placebo) and 9.6 +/- 0.5 mumol.kg-1.min-1 (DEX)]. Nonoxidative carbohydrate disposal, calculated as fructose administration rate minus net carbohydrate oxidation rate after fructose ingestion measured by indirect calorimetry, was also similar in both protocols [5.8 +/- 0.8 (Placebo) and 5.9 +/- 2.0 mumol.kg-1.min-1 (DEX)]. We concluded that dexamethasone 1) does not alter the autoregulatory process that prevents a fructose-induced increase in gluconeogenesis from increasing total glucose production and 2) does not affect oxidative and nonoxidative pathways of fructose. This indicates that the insulin-regulated enzymes involved in these pathways are not affected in a major way by dexamethasone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Critical limb ischemia in diabetic patients is associated with high rates of morbidity and mortality. Suboptimal responses to the available medical and surgical treatments are common in these patients, who also demonstrate limited vascular homeostasis. Neovasculogenesis induced by stem cell therapy could be a useful approach for these patients. Neovasculogenesis and clinical improvement were compared at baseline and at 3 and 12 months after autologous bone marrow-derived mononuclear cell (BMMNC) transplantation in diabetic patients with peripheral artery disease. We conducted a prospective study to evaluate the safety and efficacy of intra-arterial administration of autologous BMMNCs (100-400 × 10(6) cells) in 20 diabetic patients with severe below-the-knee arterial ischemia. Although the time course of clinical effects differed among patients, after 12 months of follow-up all patients presented a notable improvement in the Rutherford-Becker classification, the University of Texas diabetic wound scales, and the Ankle-Brachial Index in the target limb. The clinical outcome was consistent with neovasculogenesis, which was assessed at 3 months by digital subtraction angiography and quantified by MetaMorph software. Unfortunately, local cell therapy in the target limb had no beneficial effect on the high mortality rate in these patients. In diabetic patients with critical limb ischemia, intra-arterial perfusion of BMMNCs is a safe procedure that generates a significant increase in the vascular network in ischemic areas and promotes remarkable clinical improvement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND & AIMS By means of this update, the GARIN working group aims to define its position regarding the treatment of patients with diabetes or stress hyperglycaemia and artificial nutrition. In this area there are many aspects of uncertainty, especially in non-critically ill patients. METHODS Bibliographical review, and specific questions in advance were discussed and answered at a meeting in the form of conclusions. RESULTS We propose a definition of stress hyperglycaemia. The indications and access routes for artificial nutrition are no different in patients with diabetes/stress hyperglycaemia than in non-diabetics. The objective must be to keep pre-prandial blood glucose levels between 100 and 140 mg/dl and post-prandial levels between 140 and 180 mg/dl. Hyperglycemia can be prevented through systematic monitoring of capillary glycaemias and adequately calculate energy-protein needs. We recommend using enteral formulas designed for patients with diabetes (high monounsaturated fat) to facilitate metabolic control. The best drug treatment for treating hyperglycaemia/diabetes in hospitalised patients is insulin and we make recommendations for adapt the theoretical insulin action to the nutrition infusion regimen. We also addressed recommendations for future investigation. CONCLUSIONS This recommendations about artificial nutrition in patients with diabetes or stress hyperglycaemia can add value to clinical work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION. Recent studies suggest that increased blood glucose variability (BGV) is associated with ICU mortality1. Hypothermia is known to induce insulin resistance, thus potentially increasing BGV. No studies however have examined the effect of therapeutic hypothermia (TH) on insulin requirements and BGV. OBJECTIVES. To examine the effect of TH on BGV and its relationship to outcome in patients with coma after cardiac arrest (CA). METHODS. We prospectively studied 132 consecutive comatose CA patients treated with TH (target core temp 33_C for 24 h, using surface cooling). All patients were treated with intravenous insulin (blood glucose target 6-8 mM), according to a written algorithm, with nurse-driven adjustment of insulin dose. For each patient, standard deviation of repeated blood glucose samples was used to calculate BGV. Two time-points, comparable in duration, were studied: TH (stable maintenance phase, i.e. 6-24 h, core temp ± 33_C) vs. Normothermia (NT, i.e. after rewarming, stable normothermic phase, core temp ± 37_C). Mortality and neurological recovery (Glasgow-Pittsburgh Cerebral Performance Categories, CPC, dichotomized as good = CPC 1-2 vs. poor = CPC 3-5) were assessed at hospital discharge. Statistical analysis was performed with ANOVA for repeated measures. RESULTS. Compared to NT, TH was associated with increased intravenous insulin dose (0.8 ± 1.1 vs. 1.6 ± 2 U/h, P\0.0001), higher mean (6.9 ± 1.3 vs. 7.7 ± 1.8 mM, P\0.0001) and maximum (9.1 ± 3.7 vs. 10.9 ± 3.6 mM, P\0.0001) blood glucose, and increased BGV (1.3 ± 1.2 vs. 1.7 ± 1.1 mM, P = 0.004). Increased BGV was strongly associated with mortality (2.5 ± 1.5 mM in non-survivors vs. 1.6 ± 1 mM in survivors, P\0.001) and worse outcome (2.3 ± 1.4 mM in patients with poor vs. 1.5 ± 0.8 mM in those with good neurological recovery, P\0.0001). CONCLUSIONS. Therapeutic hypothermia is associated with increased insulin requirements and higher blood glucose variability,which in turn correlateswithworse prognosis in patientswith post- CA coma. Strategies aimed to maintain stable glycemic profile and avoid blood glucose variability might contribute to optimize the management of TH and may translate into better outcome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Experimental evidence suggests that lactate is neuroprotective after acute brain injury; however, data in humans are lacking. We examined whether exogenous lactate supplementation improves cerebral energy metabolism in humans with traumatic brain injury (TBI). METHODS: We prospectively studied 15 consecutive patients with severe TBI monitored with cerebral microdialysis (CMD), brain tissue PO2 (PbtO2), and intracranial pressure (ICP). Intervention consisted of a 3-h intravenous infusion of hypertonic sodium lactate (aiming to increase systemic lactate to ca. 5 mmol/L), administered in the early phase following TBI. We examined the effect of sodium lactate on neurochemistry (CMD lactate, pyruvate, glucose, and glutamate), PbtO2, and ICP. RESULTS: Treatment was started on average 33 ± 16 h after TBI. A mixed-effects multilevel regression model revealed that sodium lactate therapy was associated with a significant increase in CMD concentrations of lactate [coefficient 0.47 mmol/L, 95% confidence interval (CI) 0.31-0.63 mmol/L], pyruvate [13.1 (8.78-17.4) μmol/L], and glucose [0.1 (0.04-0.16) mmol/L; all p < 0.01]. A concomitant reduction of CMD glutamate [-0.95 (-1.94 to 0.06) mmol/L, p = 0.06] and ICP [-0.86 (-1.47 to -0.24) mmHg, p < 0.01] was also observed. CONCLUSIONS: Exogenous supplemental lactate can be utilized aerobically as a preferential energy substrate by the injured human brain, with sparing of cerebral glucose. Increased availability of cerebral extracellular pyruvate and glucose, coupled with a reduction of brain glutamate and ICP, suggests that hypertonic lactate therapy has beneficial cerebral metabolic and hemodynamic effects after TBI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose-dependent insulinotropic polypeptide (GIP) was initially described to be rapidly regulated by endocrine cells in response to nutrient ingestion, with stimulatory effects on insulin synthesis and release. Previously, we demonstrated a significant up-regulation of GIP mRNA in the rat subiculum after fornix injury. To gain more insight into the lesion-induced expression of GIP and its receptor (GIPR), expression profiles of the mRNAs were studied after rat sciatic nerve crush injury in 1) affected lumbar dorsal root ganglia (DRG), 2) spinal cord segments, and 3) proximal and distal nerve fragments by means of quantitative RT-PCR. Our results clearly identified lesion-induced as well as tissue type-specific mRNA regulation of GIP and its receptor. Furthermore, comprehensive immunohistochemical stainings not only confirmed and exceeded the previous observation of neuronal GIP expression but also revealed corresponding GIPR expression, implying putative modulatory functions of GIP/GIPR signaling in adult neurons. In complement, we also observed expression of GIP and its receptor in myelinating Schwann cells and oligodendrocytes. Polarized localization of GIPR in the abaxonal Schwann cell membranes, plasma membrane-associated GIPR expression of satellite cells, and ependymal GIPR expression strongly suggests complex cell type-specific functions of GIP and GIPR in the adult nervous system that are presumably mediated by autocrine and paracrine interactions, respectively. Notably, in vivo analyses with GIPR-deficient mice suggest a critical role of GIP/GIPR signal transduction in promoting spontaneous recovery after nerve crush, insofar as traumatic injury of GIPR-deficient mouse sciatic nerve revealed impaired axonal regeneration compared with wild-type mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Coronary microvascular dysfunction (CMD) is associated with cardiovascular events in type 2 diabetes mellitus (T2DM). Optimal glycaemic control does not always preclude future events. We sought to assess the effect of the current target of HBA1c level on the coronary microcirculatory function and identify predictive factors for CMD in T2DM patients. Methods We studied 100 patients with T2DM and 214 patients without T2DM. All of them with a history of chest pain, non-obstructive angiograms and a direct assessment of coronary blood flow increase in response to adenosine and acetylcholine coronary infusion, for evaluation of endothelial independent and dependent CMD. Patients with T2DM were categorized as having optimal (HbA1c < 7 %) vs. suboptimal (HbA1c ≥ 7 %) glycaemic control at the time of catheterization. Results Baseline characteristics and coronary endothelial function parameters differed significantly between T2DM patients and control group. The prevalence of endothelial independent CMD (29.8 vs. 39.6 %, p = 0.40) and dependent CMD (61.7 vs. 62.2 %, p = 1.00) were similar in patients with optimal vs. suboptimal glycaemic control. Age (OR 1.10; CI 95 % 1.04–1.18; p < 0.001) and female gender (OR 3.87; CI 95 % 1.45–11.4; p < 0.01) were significantly associated with endothelial independent CMD whereas glomerular filtrate (OR 0.97; CI 95 % 0.95–0.99; p < 0.05) was significantly associated with endothelial dependent CMD. The optimal glycaemic control was not associated with endothelial independent (OR 0.60, CI 95 % 0.23–1.46; p 0.26) or dependent CMD (OR 0.99, CI 95 % 0.43–2.24; p = 0.98). Conclusions The current target of HBA1c level does not predict a better coronary microcirculatory function in T2DM patients. The appropriate strategy for prevention of CMD in T2DM patients remains to be addressed. Keywords: Endothelial dysfunction; Diabetes mellitus; Coronary microcirculation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Critical limb ischemia in diabetic patients is associated with high rates of morbidity and mortality. Suboptimal responses to the available medical and surgical treatments are common in these patients, who also demonstrate limited vascular homeostasis. Neovasculogenesis induced by stem cell therapy could be a useful approach for these patients. Neovasculogenesis and clinical improvement were compared at baseline and at 3 and 12 months after autologous bone marrow-derived mononuclear cell (BMMNC) transplantation in diabetic patients with peripheral artery disease. We conducted a prospective study to evaluate the safety and efficacy of intra-arterial administration of autologous BMMNCs (100-400 × 10(6) cells) in 20 diabetic patients with severe below-the-knee arterial ischemia. Although the time course of clinical effects differed among patients, after 12 months of follow-up all patients presented a notable improvement in the Rutherford-Becker classification, the University of Texas diabetic wound scales, and the Ankle-Brachial Index in the target limb. The clinical outcome was consistent with neovasculogenesis, which was assessed at 3 months by digital subtraction angiography and quantified by MetaMorph software. Unfortunately, local cell therapy in the target limb had no beneficial effect on the high mortality rate in these patients. In diabetic patients with critical limb ischemia, intra-arterial perfusion of BMMNCs is a safe procedure that generates a significant increase in the vascular network in ischemic areas and promotes remarkable clinical improvement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activation of the peroxisome proliferator-activated receptor (PPAR)-alpha increases lipid catabolism and lowers the concentration of circulating lipid, but its role in the control of glucose metabolism is not as clearly established. Here we compared PPARalpha knockout mice with wild type and confirmed that the former developed hypoglycemia during fasting. This was associated with only a slight increase in insulin sensitivity but a dramatic increase in whole-body and adipose tissue glucose use rates in the fasting state. The white sc and visceral fat depots were larger due to an increase in the size and number of adipocytes, and their level of GLUT4 expression was higher and no longer regulated by the fed-to-fast transition. To evaluate whether these adipocyte deregulations were secondary to the absence of PPARalpha from liver, we reexpresssed this transcription factor in the liver of knockout mice using recombinant adenoviruses. Whereas more than 90% of the hepatocytes were infected and PPARalpha expression was restored to normal levels, the whole-body glucose use rate remained elevated. Next, to evaluate whether brain PPARalpha could affect glucose homeostasis, we activated brain PPARalpha in wild-type mice by infusing WY14643 into the lateral ventricle and showed that whole-body glucose use was reduced. Hence, our data show that PPARalpha is involved in the regulation of glucose homeostasis, insulin sensitivity, fat accumulation, and adipose tissue glucose use by a mechanism that does not require PPARalpha expression in the liver. By contrast, activation of PPARalpha in the brain stimulates peripheral glucose use. This suggests that the alteration in adipocyte glucose metabolism in the knockout mice may result from the absence of PPARalpha in the brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To investigate the influence of obesity on the regulation of myocardial glucose metabolism following protein kinase C (PKC) activation in obese (fa/fa) and lean (Fa/?) Zucker rats. DESIGN: Isolated hearts obtained from 17-week-old lean and obese Zucker rats were perfused with 200 nM phorbol 12-myristate 13-acetate (PMA) for different time periods prior to the evaluation of PKC and GLUT-4 translocation. For metabolic studies isolated hearts from 48 h starved Zucker rats were perfused with an erythrocytes-enriched buffer containing increased concentrations (10-100 nM) of PMA. MEASUREMENTS: Immunodetectable PKC isozymes and GLUT-4 were determined by Western blots. Glucose oxidation and glycolysis were evaluated by measuring the myocardial release of 14CO2 and 3H2O from [U-14C]glucose and [5-3H]glucose, respectively. RESULTS: PMA (200 nM) induced maximal translocation of ventricular PKCalpha from the cytosol to the membranes within 10 min. This translocation was 2-fold lower in the heart from obese rats when compared to lean rats. PMA also induced a significant translocation of ventricular GLUT-4 from the microsomal to the sarcolemmal fraction within 60 min in lean but not in obese rats. Rates of basal cardiac glucose oxidation and glycolysis in obese rats were approximately 2-fold lower than those of lean rats. Perfusion with increasing concentrations of PMA (10-100 nM) led to a significant decrease of cardiac glucose oxidation in lean but not in obese rats. CONCLUSION: Our results show that in the heart of the genetically obese Zucker rat, the impairment in PKCalpha activation is in line with a diminished activation of GLUT-4 as well as with the lack of PMA effect on glucose oxidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent clinical trials with type 2 diabetic patients and the quest of normal glyceamic values, have revealed difficulties and limitations. These too normal glyceamic targets corresponding to the physiological standards are associated with very high rate of hypoglycemia and an increase of mortality. A too simplistic view of treatment: "the lowest, the better is in the diabetes" is no longer defensible. The knowledge from complex systems behavior invites us to search targets adapted to a new state of equilibrium due to loss of self-regulation. These targets should not aim the physiological standards but to be adapted to patient's situation. Shared decision-making and consensus are the two pillars of this new strategy supported by the new ADA-EASD guidelines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examines the role of glucose and lactate as energy substrates to sustain synaptic vesicle cycling. Synaptic vesicle turnover was assessed in a quantitative manner by fluorescence microscopy in primary cultures of mouse cortical neurons. An electrode-equipped perfusion chamber was used to stimulate cells both by electrical field and potassium depolarization during image acquisition. An image analysis procedure was elaborated to select in an unbiased manner synaptic boutons loaded with the fluorescent dye N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl)pyridinium dibromide (FM1-43). Whereas a minority of the sites fully released their dye content following electrical stimulation, others needed subsequent K(+) depolarization to achieve full release. This functional heterogeneity was not significantly altered by the nature of metabolic substrates. Repetitive stimulation sequences of FM1-43 uptake and release were then performed in the absence of any metabolic substrate and showed that the number of active sites dramatically decreased after the first cycle of loading/unloading. The presence of 1 mM glucose or lactate was sufficient to sustain synaptic vesicle cycling under these conditions. Moreover, both substrates were equivalent for recovery of function after a phase of decreased metabolic substrate availability. Thus, lactate appears to be equivalent to glucose for sustaining synaptic vesicle turnover in cultured cortical neurons during activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We wished to determine if chronic neuropeptide Y (NPY) infusion (1 ng/min for 1 week by Alzet minipump) could decrease plasma renin activity (PRA) and norepinephrine (NE) in a rat myocardial infarction (MI) model of moderate compensated congestive heart failure (CHF). CHF was produced by prior (6-8 weeks) ligation of the left coronary artery; control rats were sham-operated. Carotid arterial blood was drawn for PRA and NE in conscious unrestrained rats that had been instrumented 24 h earlier. MI rats had increased PRA as compared with sham-operated rats [8.73 +/- 1.27 vs. 5.10 +/- 0.91 ng angiotensin (AI) I/ml.h, mean +/- SE]. During chronic NPY infusion, PRA was reduced to normal in the MI group (4.78 +/- 0.91) but was not affected in the sham group (5.65 +/- 0.51). Plasma NE was altered similarly, but the changes did not reach statistical significance. These data suggest that NPY has the capacity to restrain renin release in moderate compensated CHF.