824 resultados para genomic walking
Resumo:
Background: The most common application of imputation is to infer genotypes of a high-density panel of markers on animals that are genotyped for a low-density panel. However, the increase in accuracy of genomic predictions resulting from an increase in the number of markers tends to reach a plateau beyond a certain density. Another application of imputation is to increase the size of the training set with un-genotyped animals. This strategy can be particularly successful when a set of closely related individuals are genotyped. ----- Methods: Imputation on completely un-genotyped dams was performed using known genotypes from the sire of each dam, one offspring and the offspring’s sire. Two methods were applied based on either allele or haplotype frequencies to infer genotypes at ambiguous loci. Results of these methods and of two available software packages were compared. Quality of imputation under different population structures was assessed. The impact of using imputed dams to enlarge training sets on the accuracy of genomic predictions was evaluated for different populations, heritabilities and sizes of training sets. ----- Results: Imputation accuracy ranged from 0.52 to 0.93 depending on the population structure and the method used. The method that used allele frequencies performed better than the method based on haplotype frequencies. Accuracy of imputation was higher for populations with higher levels of linkage disequilibrium and with larger proportions of markers with more extreme allele frequencies. Inclusion of imputed dams in the training set increased the accuracy of genomic predictions. Gains in accuracy ranged from close to zero to 37.14%, depending on the simulated scenario. Generally, the larger the accuracy already obtained with the genotyped training set, the lower the increase in accuracy achieved by adding imputed dams. ----- Conclusions: Whenever a reference population resembling the family configuration considered here is available, imputation can be used to achieve an extra increase in accuracy of genomic predictions by enlarging the training set with completely un-genotyped dams. This strategy was shown to be particularly useful for populations with lower levels of linkage disequilibrium, for genomic selection on traits with low heritability, and for species or breeds for which the size of the reference population is limited.
Resumo:
The transformation from high level task specification to low level motion control is a fundamental issue in sensorimotor control in animals and robots. This thesis develops a control scheme called virtual model control which addresses this issue. Virtual model control is a motion control language which uses simulations of imagined mechanical components to create forces, which are applied through joint torques, thereby creating the illusion that the components are connected to the robot. Due to the intuitive nature of this technique, designing a virtual model controller requires the same skills as designing the mechanism itself. A high level control system can be cascaded with the low level virtual model controller to modulate the parameters of the virtual mechanisms. Discrete commands from the high level controller would then result in fluid motion. An extension of Gardner's Partitioned Actuator Set Control method is developed. This method allows for the specification of constraints on the generalized forces which each serial path of a parallel mechanism can apply. Virtual model control has been applied to a bipedal walking robot. A simple algorithm utilizing a simple set of virtual components has successfully compelled the robot to walk eight consecutive steps.
Resumo:
Since robots are typically designed with an individual actuator at each joint, the control of these systems is often difficult and non-intuitive. This thesis explains a more intuitive control scheme called Virtual Model Control. This thesis also demonstrates the simplicity and ease of this control method by using it to control a simulated walking hexapod. Virtual Model Control uses imagined mechanical components to create virtual forces, which are applied through the joint torques of real actuators. This method produces a straightforward means of controlling joint torques to produce a desired robot behavior. Due to the intuitive nature of this control scheme, the design of a virtual model controller is similar to the design of a controller with basic mechanical components. The ease of this control scheme facilitates the use of a high level control system which can be used above the low level virtual model controllers to modulate the parameters of the imaginary mechanical components. In order to apply Virtual Model Control to parallel mechanisms, a solution to the force distribution problem is required. This thesis uses an extension of Gardner`s Partitioned Force Control method which allows for the specification of constrained degrees of freedom. This virtual model control technique was applied to a simulated hexapod robot. Although the hexapod is a highly non-linear, parallel mechanism, the virtual models allowed text-book control solutions to be used while the robot was walking. Using a simple linear control law, the robot walked while simultaneously balancing a pendulum and tracking an object.
Resumo:
Walking Closet es un proyecto de emprendimiento creado de la mano del Centro de Emprendimiento de la Universidad del Rosario, con el objetivo de formalizar la actividad económica a la cual sus autoras han venido desarrollando. Durante el proyecto se analizaron las condiciones económicas del país, asi como de la localidad a la cual se centrara nuestra actividad: Chapinero. Asi mismo se expuso la propuesta de valor y las diferentes estrategias que haran posible el logro de los objetivos, tambien se analizaron los aspectos financieros y su viabilidad. dando como resultado una guía para la implemetación del proyecto.
Resumo:
Walking Closet es un proyecto de emprendimiento creado de la mano del Centro de Emprendimiento de la Universidad del Rosario, con el objetivo de formalizar la actividad económica a la cual sus autoras han venido desarrollando. Durante el proyecto se analizaron las condiciones económicas del país, asi como de la localidad a la cual se centrara nuestra actividad: Chapinero. Asi mismo se expuso la propuesta de valor y las diferentes estrategias que haran posible el logro de los objetivos, tambien se analizaron los aspectos financieros y su viabilidad. dando como resultado una guía para la implemetación del proyecto.
Resumo:
Identifying the genetic changes driving adaptive variation in natural populations is key to understanding the origins of biodiversity. The mosaic of mimetic wing patterns in Heliconius butterflies makes an excellent system for exploring adaptive variation using next-generation sequencing. In this study, we use a combination of techniques to annotate the genomic interval modulating red color pattern variation, identify a narrow region responsible for adaptive divergence and convergence in Heliconius wing color patterns, and explore the evolutionary history of these adaptive alleles. We use whole genome resequencing from four hybrid zones between divergent color pattern races of Heliconius erato and two hybrid zones of the co-mimic Heliconius melpomene to examine genetic variation across 2.2 Mb of a partial reference sequence. In the intergenic region near optix, the gene previously shown to be responsible for the complex red pattern variation in Heliconius, population genetic analyses identify a shared 65-kb region of divergence that includes several sites perfectly associated with phenotype within each species. This region likely contains multiple cis-regulatory elements that control discrete expression domains of optix. The parallel signatures of genetic differentiation in H. erato and H. melpomene support a shared genetic architecture between the two distantly related co-mimics; however, phylogenetic analysis suggests mimetic patterns in each species evolved independently. Using a combination of next-generation sequencing analyses, we have refined our understanding of the genetic architecture of wing pattern variation in Heliconius and gained important insights into the evolution of novel adaptive phenotypes in natural populations.
Resumo:
Un niño pequeño realiza una gira por una selva imaginaria, camina, luego rastrea, corre, salta, se balancea y, por último, vadea. A medida que avanza, escucha diferentes ruidos: ssssss, grrrrrrr, , roarrrrr, despué de cada uno la página revela el animal responsable de él. El texto, repetitivo, y las ilustraciones se combinan para animar la participación de la clase sobre los niveles de sonido y movimiento, y para crear un juego de adivinanzas. Recurso para la enseñanza de la lectura. Es el inicio de una reflexión sobre los textos y sus significados. Los niños pueden aprender a dividir una palabra en sus partes principales y crear nuevas palabras por analogía con las palabras que conocen, o para sugerir otras palabras. Para la lectura en grupos, individual o en parejas.
Resumo:
Our understanding of the evolution of microbial pathogens has been advanced by the discovery of "islands" of DNA that differ from core genomes and contain determinants of virulence [1, 2]. The acquisition of genomic islands (GIs) by horizontal gene transfer (HGT) is thought to have played a major role in microbial evolution. There are, however, few practical demonstrations of the acquisition of genes that control virulence, and, significantly, all have been achieved outside the animal or plant host. Loss of a GI from the bean pathogen Pseudomonas syringae pv. phaseolicola (Pph) is driven by exposure to the stress imposed by the plant's resistance response [3]. Here, we show that the complete episomal island, which carries pathogenicity genes including the effector avrPphB, transfers between strains of Pph by transformation in planta and inserts at a specific att site in the genome of the recipient. Our results show that the evolution of bacterial pathogens by HGT may be achieved via transformation, the simplest mechanism of DNA exchange. This process is activated by exposure to plant defenses, when the pathogen is in greatest need of acquiring new genetic traits to alleviate the antimicrobial stress imposed by plant innate immunity [4].
Resumo:
Background: Pseudomonas fluorescens are common soil bacteria that can improve plant health through nutrient cycling, pathogen antagonism and induction of plant defenses. The genome sequences of strains SBW25 and Pf0-1 were determined and compared to each other and with P. fluorescens Pf-5. A functional genomic in vivo expression technology (IVET) screen provided insight into genes used by P. fluorescens in its natural environment and an improved understanding of the ecological significance of diversity within this species. Results: Comparisons of three P. fluorescens genomes (SBW25, Pf0-1, Pf-5) revealed considerable divergence: 61% of genes are shared, the majority located near the replication origin. Phylogenetic and average amino acid identity analyses showed a low overall relationship. A functional screen of SBW25 defined 125 plant-induced genes including a range of functions specific to the plant environment. Orthologues of 83 of these exist in Pf0-1 and Pf-5, with 73 shared by both strains. The P. fluorescens genomes carry numerous complex repetitive DNA sequences, some resembling Miniature Inverted-repeat Transposable Elements (MITEs). In SBW25, repeat density and distribution revealed 'repeat deserts' lacking repeats, covering approximately 40% of the genome. Conclusions: P. fluorescens genomes are highly diverse. Strain-specific regions around the replication terminus suggest genome compartmentalization. The genomic heterogeneity among the three strains is reminiscent of a species complex rather than a single species. That 42% of plant-inducible genes were not shared by all strains reinforces this conclusion and shows that ecological success requires specialized and core functions. The diversity also indicates the significant size of genetic information within the Pseudomonas pan genome.
Resumo:
Retinoid X receptors (RXRs) are important transcriptional nuclear hormone receptors, acting as either homodimers or the binding partner for at least one fourth of all the known human nuclear receptors. Functional nongenomic effects of nuclear receptors are poorly understood; however, recently peroxisome proliferator-activated receptor (PPAR) gamma, PPARbeta, and the glucocorticoid receptor have all been found active in human platelets. Human platelets express RXRalpha and RXRbeta. RXR ligands inhibit platelet aggregation and TXA(2) release to ADP and the TXA(2) receptors, but only weakly to collagen. ADP and TXA(2) both signal via the G protein, Gq. RXR rapidly binds Gq but not Gi/z/o/t/gust in a ligand-dependent manner and inhibits Gq-induced Rac activation and intracellular calcium release. We propose that RXR ligands may have beneficial clinical actions through inhibition of platelet activation. Furthermore, our results demonstrate a novel nongenomic mode for nuclear receptor action and a functional cross-talk between G-protein and nuclear receptor signaling families.
Resumo:
Recombination in Poliovirus vaccine strains is a very frequent phenomenon. In this report 23 polio/Sabin strains isolated from healthy vaccinees or from VAPP patients after OPV administration, were investigated in order to identify recombination sites from 2C to 3D regions of the poliovirus genome. RT-PCR, followed by Restriction Fragment Length Polymorphism (RFLP) screening analysis were applied in four distant genomic regions (5' UTR, VP1, 2C and 3C-3D) in order to detect any putative recombinant. The detected recombinants were sequenced from 2C to the end of the genome (3' UTR) and the exact recombination sites were determined with computational analysis. Five of the 23 isolated strains were recombinant in one genomic region, two of them in 2C, isolates EP16:S3/S2, EP23:S3/S1, two in 3D isolates EP6:S2/S1, EP12:S2/S1 and one in 3A isolate EP9:S2/Sl. Point mutations were found in strains EP3, EP6, EP9 and EP12. Recombination specific types and sites re-occurrence along with point mutations are discussed concerning the polioviruses evolution.