926 resultados para garnet
Resumo:
This report includes the results of geological investigation of the Clinton Mining District and the Hidden Treasure Mine.The Clinton Mining District is an unorganized mining district situated in the Garnet Range two and one-half miles northeast of the town of Clinton, Montana, which is on the Northern Pacific Railway and the Chicago, Milwaukee, St. Paul, and Pacific Railroad seventeen miles east of the city of Missoula. The district is in the same range of mountains as the Garnet Mining District and the drainage from the district covered is to the south into the Hell Gate or Clarks Fork of the Columbia River. The main stream is known as Trail creek, which runs in a southerly direction from the area studied.
Resumo:
In this issue...Valentine's Dance, Z-Bar-T, Professor Stolz, registration, Walkerville, E-days, German Club, Herbert Hoover, Oil and Gas Journal, Gregson Hot springs
Resumo:
The Stak massif, northern Pakistan, is a newly recognized occurrence of eclogite formed by the subduction of the northern margin of the Indian continent in the northwest Himalaya. Although this unit was extensively retrogressed during the Himalayan collision, records of the high-pressure (HP) event as well as a continuous pressure-temperature (P-T) path were assessed from a single thin section using a new multiequilibrium method. This method uses microprobe X-ray compositional maps of garnet and omphacitic pyroxene followed by calculations of ∼200,000 P-T estimates using appropriate thermobarometers. The Stak eclogite underwent prograde metamorphism, increasing from 650 °C and 2.4 GPa to the peak conditions of 750 °C and 2.5 GPa, then retrogressed to 700–650 °C and 1.6–0.9 GPa under amphibolite-facies conditions. The estimated peak metamorphic conditions and P-T path are similar to those of the Kaghan and Tso Morari high- to ultrahigh-pressure (HP-UHP) massifs. We propose that these three massifs define a large HP to UHP province in the northwest Himalaya, comparable to the Dabie-Sulu province in China and the Western Gneiss Region in Norway.
Resumo:
Electron microprobe data are presented for chevkinite-group minerals from granulite-facies rocks and associated pegmatities of the Napier Complex and Mawson Station charnockite in East Antarctica and from the Eastern Ghats, South India. Their compositions conform to the general formula for this group, viz. A(4)BC(2)D(2)Si(4)O(22) where, in the analysed specimens A = (rare-earth elements (REE), Ca, Y, Th), B = Fe(2+) Mg, C = (Al, Mg, Ti, Fe(2+), Fe(3+), Zr) and D = Ti and plot within the perrierite field oftlic total Fe (as FeO) (wt.%) vs. CaO (wt.%) discriminator diagram of Macdonald and Belkin (2002). In contrast to most chevkinite-group minerals, the A site shows unusual enrichment in the MREE and HREE relative to the LREE and Ca. In one sample from the Napier Complex, Y is the dominant cation among the total REE + Y in the A site, the first reported case of Y-dominance in the chevkinite group. The minerals include the most Al-rich yet reported in the chevkinite group (<= 9.15 wt.% Al(2)O(3)), sufficient to fill the C site in two samples. Conversely, the amount of Ti in these samples does not fill the D site. and, thus, some of the Al could be making up the deficiency at D, a situation not previously reported in the chevkinite group. Fe abudances are low, requiring Mg to occupy up to 45% of the B site. The chevkinite-group minerals analysed originated from three distinct parageneses: (1) pegmatites containing hornblende and orthopyroxene or garnet; (2) orthopyroxene-bearing gneiss and granulite; (3) highly aluminous paragneisses in which the associated minerals are relatively magnesian or aluminous. Chevkinite-group minerals from the first two parageneses have relatively high FeO content and low MgO and Al(2)O(3) contents; their compositions plot in the field for mafic and intermediate igneous rocks. In contrast, chevkinite-group minerals from the third paragenesis are notably more aluminous and have greater Mg/Fe ratios.
Resumo:
Kornerupine and prismatine were introduced independently by Lorenzen in 1884 (but published in 1886 and 1893) and by Sauer in 1886, respectively. Ussing (1889) showed that the two minerals were sufficiently close crystallographically and chemically to be regarded as one species. However, recent analyses of boron using the ion microprobe and crystal structure refinement, indicate that the boron content of one tetrahedral site in kornerupine ranges from 0 to 1. Kornerupine and prismatine, from their respective type localities of Fiskenaesset, Greenland and Waldheim, Germany, are distinct minerals, members of an isomorphic series differing in boron content. For this reason, we re-introduce Sauer's name prismatine for kornerupines with B > 0.5 atoms per formula unit (p.f.u.) of 22(O,OH,F), and restrict the name kornerupine sensu stricto to kornerupines with B < 0.5 p.f.u. Kornerupine sensu lato is an appropriate group name for kornerupine of unknown boron content. Kornerupine sensu stricto and prismatine from the type localities differ also in Fe2+/Mg ratio, Si - (Mg + Fe2+ + Mn) content, Al content, F content, colour, density, cell parameters, and paragenesis. Both minerals formed under granulite-facies conditions with sapphirine and phlogopite, but kornerupine sensu stricto is associated with anorthite and homblende or gedrite, whereas prismatine is found with oligoclase (An9-13), sillimanite, garnet, and/or tourmaline. Occurrences at other localities suggest that increasing boron content extends the stability range of prismatine relative to that of kornerupine sensu stricto.
Resumo:
Multichronometric analyses were performed on samples from a transect in the French-Italian Western Alps crossing nappes derived from the Briançonnais terrane and the Piemonte-Liguria Ocean, in an endeavour to constrain the high-pressure (HP) metamorphism and the retrogression history. 12 samples of white mica were analysed by 39Ar-40Ar stepwise heating, complemented by 2 samples from the Monte Rosa 100 km to the NE and also attributed to the Briançonnais terrane. One Sm-Nd and three Lu-Hf garnet ages from eclogites were also obtained. White mica ages decrease from ca. 300 Ma in the westernmost samples (Zone Houillère), reaching ca. 300 °C during Alpine metamorphism, to < 48 Ma in the internal units to the East, which reached ca. 500 °C during Alpine orogeny. The conventional “thermochronological” interpretation postulates Cretaceous Eo-Alpine HP metamorphism and younger “cooling ages” in the higher-temperature samples. However, Eocene Lu-Hf and Sm-Nd ages from the same samples cannot be interpreted as post-metamorphic cooling ages, which makes a Cretaceous eclogitization untenable. The age date from this transect require instead to replace conventional “thermochronology” by an approach combining age dating with detailed geochemical, petrological and microstructural investigations. Petrology reveals important mineralogical differences along the transect. Samples from the Zone Houillère mostly contain detrital mica. White mica with Si > 6.45 atoms per formula unit becomes more abundant eastward. Across the whole traverse, HP phengitic mica forms the D1 foliation. Syn-D2 mica is Si-poorer and associated with nappe stacking, exhumation, and hydrous retrogression under greenschist facies conditions. D1 phengite is very often corroded, overgrown or intergrown by syn-D2 muscovite. Most importantly, syn-D2 recrystallization is not limited to S2 schistosity domains; microchemical fingerprinting shows that it also can form pseudomorphs after crystals that could be mistaken to have formed during D1 based on microstructural arguments alone. Thereby the Cl concentration in white mica is a useful discriminator, since D2 retrogression was associated with a less saline fluid than eclogitization. Once the petrological stage is set, geochronology is straightforward. All samples contain mixtures of detrital, syn-D1 and syn-D2 mica, and retrogression phases (D3) in greatly varying proportions according to local pressure-temperature-fluid activity-deformation conditions. The correlation of age vs. Cl/K clearly identifies 47 ± 1 Ma as the age of formation of syn-D1 mica along the entire transect, including the Monte Rosa nappe samples. The inferred age of the greenschist-facies low-Si syn-D2 mica generation ranges within 39-43 Ma, with local variations. Coexistence of D1 and D2 ages, and the constancy of non-reset D1 ages along the entire transect, are strong evidence that the D1 white mica ages are very close to formation ages. Volume diffusion of Ar in white mica (activation energy E = 250 kJ/mol; pressure-adjusted diffusion coefficient D’0 < 0.03 cm2 s-1) has a subordinate effect on mineral ages compared to both prograde and retrograde recrystallization in most samples. Eocene Lu-Hf and Sm-Nd garnet ages are prograde and predate the HP peak.
Resumo:
BACKGROUND Telangiectasias of the lower extremities are very common. There are no blinded, randomized, controlled clinical trials comparing laser modalities with the gold standard sclerotherapy, while the few available studies encompass small patients cohorts. OBJECTIVE This prospective, randomized, open-label trial compares the efficacy of sclerotherapy with polidocanol vs. long-pulsed neodymium-doped yttrium aluminium garnet (Nd:YAG) laser in the treatment of leg telangiectasias. PATIENTS AND METHODS Fifty-six female patients with primary leg telangiectasias and reticular veins (C1A or S Ep AS 1 PN ) were included in the study. One leg was randomly assigned to get treatment with the multiple synchronized long-pulsed Nd:YAG laser, while the other received foam sclerotherapy with polidocanol 0.5%. The patients were treated in two sessions at intervals of 6 weeks. The patients were evaluated by the handling physician after 6 weeks and 6 months. Two investigators assessed blindly at the end of the study the photographs for clearing of the vessels using a six-point scale from 1 (no change) to 6 (100% cleared). Patients reported about pain sensation and outcome satisfaction. RESULTS According to the handling dermatologist, at the last follow-up, there was an improvement of 30-40% with a median of 3 (IQR 2) and a good improvement of 50-70% with a median of 4 (IQR 2) after laser treatment and sclerotherapy respectively. In contrast, according to the blinded investigators, there was a median of 5 (IQR 1) with a very good improvement of >70% after both therapies. Improvement was achieved more quickly by sclerotherapy, although at the last follow-up visit there was no difference in clearance between the two groups as assessed by the blinded experts (P-value 0.84). The degree of patient's satisfaction was very good and similar with both therapeutic approaches. There was a significant difference (P-value 0.003) regarding pain perception between the types of therapy. Laser was felt more painful than sclerotherapy. CONCLUSION Telangiectasias of the lower extremities can be successfully treated with either synchronized long-pulsed Nd:YAG laser or sclerotherapy. The 1064-nm long-pulsed Nd:YAG laser is associated with more pain and is suitable especially in case of needle phobia, allergy to sclerosants and in presence of small veins with telangiectatic matting, while sclerotherapy can also treat the feeder veins.
Resumo:
The phase assemblages and compositions in a K-bearing lherzolite + H2O system are determined between 4 and 6 GPa and 850–1200 °C, and the melting reactions occurring at subarc depth in subduction zones are constrained. Experiments were performed on a rocking multi-anvil apparatus. The experiments had around 16 wt% water content, and hydrous melt or aqueous fluid was segregated and trapped in a diamond aggregate layer. The compositions of the aqueous fluid and hydrous melt phases were measured using the cryogenic LA-ICP-MS technique. The residual lherzolite consists of olivine, orthopyroxene, clinopyroxene, and garnet, while diamond (C) is assumed to be inert. Hydrous and alkali-rich minerals were absent from the run products due to preferred dissolution of K2O (and Na2O) to the aqueous fluid/hydrous melt phases. The role of phlogopite in melting relations is, thus, controlled by the water content in the system: at the water content of around 16 wt% used here, phlogopite is unstable and thus does not participate in melting reactions. The water-saturated solidus, i.e., the first appearance of hydrous melt in the K–lherzolite composition, is located between 900 and 1000 °C at 4 GPa and between 1000 and 1100 °C at 5 and 6 GPa. Compositional jumps between hydrous melt and aqueous fluid at the solidus include a significant increase in the total dissolved solids load. All melts/fluids are peralkaline and calcium-rich. The melting reactions at the solidus are peritectic, as olivine, clinopyroxene, garnet, and H2O are consumed to generate hydrous melt plus orthopyroxene. Our fluid/melt compositional data demonstrate that the water-saturated hybrid peridotite solidus lies above 1000 °C at depths greater than 150 km and that the second critical endpoint is not reached at 6 GPa for a K2O–Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–Cr2O3(–TiO2) peridotite composition.
Resumo:
XMapTools is a MATLAB©-based graphical user interface program for electron microprobe X-ray image processing, which can be used to estimate the pressure–temperature conditions of crystallization of minerals in metamorphic rocks. This program (available online at http://www.xmaptools.com) provides a method to standardize raw electron microprobe data and includes functions to calculate the oxide weight percent compositions for various minerals. A set of external functions is provided to calculate structural formulae from the standardized analyses as well as to estimate pressure–temperature conditions of crystallization, using empirical and semi-empirical thermobarometers from the literature. Two graphical user interface modules, Chem2D and Triplot3D, are used to plot mineral compositions into binary and ternary diagrams. As an example, the software is used to study a high-pressure Himalayan eclogite sample from the Stak massif in Pakistan. The high-pressure paragenesis consisting of omphacite and garnet has been retrogressed to a symplectitic assemblage of amphibole, plagioclase and clinopyroxene. Mineral compositions corresponding to ~165,000 analyses yield estimates for the eclogitic pressure–temperature retrograde path from 25 kbar to 9 kbar. Corresponding pressure–temperature maps were plotted and used to interpret the link between the equilibrium conditions of crystallization and the symplectitic microstructures. This example illustrates the usefulness of XMapTools for studying variations of the chemical composition of minerals and for retrieving information on metamorphic conditions on a microscale, towards computation of continuous pressure–temperature-and relative time path in zoned metamorphic minerals not affected by post-crystallization diffusion.
Resumo:
The spectrum characteristic of the EMC ranges from eclogites (containing omphacite and/or jadeite, garnet, phengite, glaucophane, zoisite, chloritoid, rutile) to phengite schists, calcschists, and marbles, as well as a variety of orthogneisses. Despite the intense polyphase deformation and HP-metamorphic recrystallization, it is possible in some locations to recognize pre-Alpine characteristics in some of the protoliths. For instance, two types of felsic orthogneiss can be distinguished in the Aosta Valley, one derived from Permian granitoids (with local preservation of intrusive contacts, magmatic inclusions, leucocratic veins and other magmatic structures; Stop 3), the other derived from pre-Variscan leuco-monzogranite, such as the building stone mined at the “Argentera” quarry near Settimo Vittone / Montestrutto (Stop 2; so-called “Verde Argento” contains jadeite, phengite, K-feldspar, quartz). Polycyclic and more rarely monocyclic metasediments contain evidence of a complex Alpine PTDt-evolution, locally including relics of their prograde history from blueschist, one or more stages at eclogite facies. Recent petrochronological studies have dated this HP-evolution of the Sesia Zone in some detail. In the area visited, clear evidence of HP-cycling has been identified in one km-size tectonic slice (Stop 1), but not in adjacent parts of the EMC, indicating “yo-yo tectonics”. Partial retrogression and attendant ductile to brittle deformation of the HP-rocks is evident in one of the outcrops (Stop 4). Apart from the four localities in the Sesia Zone, a final outcrop introduces HP-rocks of the adjacent Piemonte oceanic unit, specifically calc-schists and ophiolite members of the “Zermatt-Saas” zone. The hilltop outcrop (Stop 5) displays foliated antigorite schist with peridotite relics (clinopyroxene, spinel) containing lenses derived from doleritic dykes. These fine-grained metarodingites and the folded veins containing Mg-chlorite and titanoclinohumite within serpentinite once again indicate equilibration under low-temperature eclogite facies conditions. However, these units reached that HP stage more than 20 Ma after the youngest eclogite facies imprint recognized in the Sesia Zone. Despite nearly half a century of intense study in the Sesia Zone, the complex assembly of its HP-terranes and their relation to more external parts of the Western Alps remains incompletely understood. This field guide merely introduces a few of the classic outcrops and discusses some of the critical evidence they contain, but it could not incorporate details on each stage of the evolution recognized so far.
Resumo:
Trace element behavior during hydrous melting of a metasomatized garnet–peridotite was examined at pressures of 4–6 GPa and temperatures of 1000 °C–1200 °C, conditions appropriate for fluid penetrating the mantle wedge atop the subducting slab. Experiments were performed in a rocking multi-anvil apparatus using a diamond-trap setup. The compositions of the fluid and melt phases were measured using the cryogenic LA-ICP-MS technique. The water-saturated solidus of the K-lherzolite composition is located between 900 °C and 1000 °C at 4 GPa and between 1000 °C and 1100 °C at 5 and 6 GPa. The partition coefficients between fluid or melt and clinopyroxene reveal an asymmetric MREE trough with a minimum at Dy. The clinopyroxene in equilibrium with aqueous fluids is characterized by DUfluid–cpx > DThfluid–cpx while DUmelt–cpx tends to be similar to DThmelt–cpx. The partition coefficients between fluid or melt and garnet reveal very strong light to heavy REE fractionation, DLa/DLu from 95 (hydrous melt) to 1600 (aqueous fluid). The LILE are highly incompatible with partition coefficients > 50. The behavior of HFSE are decoupled, with DZr,Hf close to 1 while DNb,Ta > 10. Garnet is characterized by DUmelt/fluid–garnet < DThmelt/fluid–garnet. A comparison of our experimental partitioning results for trivalent cations as well as the results from the literature and the calculations carried out using the lattice strain model adapted to the presence of water in the bulk system indicates that H2O in the fluid or melt phase has a prominent effect on trace element partitioning. Garnet in mantle rocks in equilibrium with an aqueous fluid is characterized by significantly higher Do(3 +) for REE in the X site of the garnet compared with the partitioning values of the optimal cation in garnet in equilibrium with hydrous melts. Our data show for the first time that the change in the nature of the mobile phase (fluid vs. melt) does affect the affinities of trace elements into the garnet crystal at conditions below the second critical endpoint of the system. The same also applies for clinopyroxene, although this is less clear. Consequently, our new data allow for refinements in predictive modeling of element transfer from the slab to the mantle wedge and of possible compositions of metasomatized mantle that sources OIB magmatism.
Resumo:
Serpentinites release at sub-arc depths volatiles and several fluid-mobile trace elements found in arc magmas. Constraining element uptake in these rocks and defining the trace element composition of fluids released upon serpentinite dehydration can improve our understanding of mass transfer across subduction zones and to volcanic arcs. The eclogite-facies garnet metaperidotite and chlorite harzburgite bodies embedded in paragneiss of the subduction melange from Cima di Gagnone derive from serpentinized peridotite protoliths and are unique examples of ultramafic rocks that experienced subduction metasomatism and devolatilization. In these rocks, metamorphic olivine and garnet trap polyphase inclusions representing the fluid released during high-pressure breakdown of antigorite and chlorite. Combining major element mapping and laser-ablation ICP-MS bulk inclusion analysis, we characterize the mineral content of polyphase inclusions and quantify the fluid composition. Silicates, Cl-bearing phases, sulphides, carbonates, and oxides document post-entrapment mineral growth in the inclusions starting immediately after fluid entrapment. Compositional data reveal the presence of two different fluid types. The first (type A) records a fluid prominently enriched in fluid-mobile elements, with Cl, Cs, Pb, As, Sb concentrations up to 10(3) PM (primitive mantle), similar to 10(2) PM Tit Ba, while Rb, B, Sr, Li, U concentrations are of the order of 10(1) PM, and alkalis are similar to 2 PM. The second fluid (type B) has considerably lower fluid-mobile element enrichments, but its enrichment patterns are comparable to type A fluid. Our data reveal multistage fluid uptake in these peridotite bodies, including selective element enrichment during seafloor alteration, followed by fluid-rock interaction along with subduction metamorphism in the plate interface melange. Here, infiltration of sediment-equilibrated fluid produced significant enrichment of the serpentinites in As, Sb, B, Pb, an enriched trace element pattern that was then transferred to the fluid released at greater depth upon serpentine dehydration (type A fluid). The type B fluid hosted by garnet may record the composition of the chlorite breakdown fluid released at even greater depth. The Gagnone study-case demonstrates that serpentinized peridotites acquire water and fluid-mobile elements during ocean floor hydration and through exchange with sediment-equilibrated fluids in the early subduction stages. Subsequent antigorite devolatilization at subarc depths delivers aqueous fluids to the mantle wedge that can be prominently enriched in sediment-derived components, potentially triggering arc magmatism without the need of concomitant dehydration/melting of metasediments or altered oceanic crust.
Resumo:
Fluids are considered a fundamental agent for chemical exchanges between different rock types in the subduction system. Constraints on the sources and pathways of subduction fluids thus provide crucial information to reconstruct subduction processes. The Monviso ophiolitic sequence is composed of mafic, ultramafic and minor sediments that have been subducted to ~80 km depth. In this sequence, both localized fluid flow and channelized fluids along major shear zones have been documented. We investigate the timing and source of the fluids that affected the dominant mafic rocks using microscale U-Pb dating of zircon and oxygen isotope analysis of mineral zones (garnet, zircon and antigorite) in high pressure rocks with variable degree of metasomatic modification. In mafic eclogites, Jurassic zircon cores are the only mineralogical relicts of the protolith gabbros and retain δ18O values of 4.5–6 ‰, typical of mantle melts. Garnet and metamorphic zircon that grew during prograde to peak metamorphism display low δ18O values between 0.2 and 3.8 ‰, which are likely inherited from high-temperature alteration of the protolith on the sea floor. This is corroborated by δ18O values of 3.0 and 3.6 ‰ in antigorite from surrounding serpentinites. In metasomatised eclogites within the Lower Shear Zone, garnet rim formed at the metamorphic peak shows a shift to higher δ18O up to 6‰. The age of zircons in high-pressure veins and metasomatised eclogites constrains the timing of fluid flow at high pressure at around 45–46 Ma. Although the oxygen data do not contradict previous reports of interaction with serpentinite-derived fluids, the shift to isotopically heavier oxygen compositions requires contribution from sediment-derived fluids. The scarcity of metasediments in the Monviso sequence suggests that such fluids were concentrated and fluxed along the Lower Shear Zone in a sufficient amount to modify the oxygen composition of the eclogitic minerals.
Resumo:
The development and improvement of MC-ICP-MS instruments have fueled the growth of Lu–Hf geochronology over the last two decades, but some limitations remain. Here, we present improvements in chemical separation and mass spectrometry that allow accurate and precise measurements of 176Hf/177Hf and 176Lu/177Hf in high-Lu/Hf samples (e.g., garnet and apatite), as well as for samples containing sub-nanogram quantities of Hf. When such samples are spiked, correcting for the isobaric interference of 176Lu on 176Hf is not always possible if the separation of Lu and Hf is insufficient. To improve the purification of Hf, the high field strength elements (HFSE, including Hf) are first separated from the rare earth elements (REE, including Lu) on a first-stage cation column modified after Patchett and Tatsumoto (Contrib. Mineral. Petrol., 1980, 75, 263–267). Hafnium is further purified on an Ln-Spec column adapted from the procedures of Münker et al. (Geochem., Geophys., Geosyst., 2001, DOI: 10.1029/2001gc000183) and Wimpenny et al. (Anal. Chem., 2013, 85, 11258–11264) typically resulting in Lu/Hf < 0.0001, Zr/Hf < 1, and Ti/Hf < 0.1. In addition, Sm–Nd and Rb–Sr separations can easily be added to the described two-stage ion-exchange procedure for Lu–Hf. The isotopic compositions are measured on a Thermo Scientific Neptune Plus MC-ICP-MS equipped with three 1012 Ω resistors. Multiple 176Hf/177Hf measurements of international reference rocks yield a precision of 5–20 ppm for solutions containing 40 ppb of Hf, and 50–180 ppm for 1 ppb solutions (=0.5 ng sample Hf 0.5 in ml). The routine analysis of sub-ng amounts of Hf will facilitate Lu–Hf dating of low-concentration samples.
Resumo:
Laser irradiation has numerous favorable characteristics, such as ablation or vaporization, hemostasis, biostimulation (photobiomodulation) and microbial inhibition and destruction, which induce various beneficial therapeutic effects and biological responses. Therefore, the use of lasers is considered effective and suitable for treating a variety of inflammatory and infectious oral conditions. The CO2 , neodymium-doped yttrium-aluminium-garnet (Nd:YAG) and diode lasers have mainly been used for periodontal soft-tissue management. With development of the erbium-doped yttrium-aluminium-garnet (Er:YAG) and erbium, chromium-doped yttrium-scandium-gallium-garnet (Er,Cr:YSGG) lasers, which can be applied not only on soft tissues but also on dental hard tissues, the application of lasers dramatically expanded from periodontal soft-tissue management to hard-tissue treatment. Currently, various periodontal tissues (such as gingiva, tooth roots and bone tissue), as well as titanium implant surfaces, can be treated with lasers, and a variety of dental laser systems are being employed for the management of periodontal and peri-implant diseases. In periodontics, mechanical therapy has conventionally been the mainstream of treatment; however, complete bacterial eradication and/or optimal wound healing may not be necessarily achieved with conventional mechanical therapy alone. Consequently, in addition to chemotherapy consisting of antibiotics and anti-inflammatory agents, phototherapy using lasers and light-emitting diodes has been gradually integrated with mechanical therapy to enhance subsequent wound healing by achieving thorough debridement, decontamination and tissue stimulation. With increasing evidence of benefits, therapies with low- and high-level lasers play an important role in wound healing/tissue regeneration in the treatment of periodontal and peri-implant diseases. This article discusses the outcomes of laser therapy in soft-tissue management, periodontal nonsurgical and surgical treatment, osseous surgery and peri-implant treatment, focusing on postoperative wound healing of periodontal and peri-implant tissues, based on scientific evidence from currently available basic and clinical studies, as well as on case reports.