807 resultados para frequency based knowledge discovery


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Existen en la actualidad múltiples modelos de gestión de conocimiento y medición del capital humano, los cuales son aplicados en las organizaciones, pero ninguno de éstos ha sido diseñado para Instituciones de Educación Superior. En este trabajo se hace un recuento de algunos de los modelos de gestión del conocimiento y capital intelectual más destacados como el Modelo de conversión del conocimiento de Nonaka y Takeuchi, el Modelo de GC de Arthur Andersen, el Cuadro de Mando Integral de Kaplan y Norton, entre otros, pero es a partir del Modelo Organizacional Estrella de Galbraith que se presenta una propuesta teórica para caracterizar un modelo de gestión del conocimiento aplicable a las funciones universitarias de investigación y extensión en la Universidad CES – Medellín, Colombia, a través de una investigación cualitativa en donde, a partir de la correlación entre la teoría general de la GC, particularmente de los modelos y el análisis de las características de la Universidad CES, así como la revisión sistemática, el grupo focal y el análisis documental se propone el Modelo Hexagonal de GC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Las organizaciones en la actualidad deben encontrar diferentes maneras de sobrevivir en un tiempo de rápida transformación. Uno de los mecanismos usados por las empresas para adaptarse a los cambios organizacionales son los sistemas de control de gestión, que a su vez permiten a las organizaciones hacer un seguimiento a sus procesos, para que la adaptabilidad sea efectiva. Otra variable importante para la adaptación es el aprendizaje organizacional siendo el proceso mediante el cual las organizaciones se adaptan a los cambios del entorno, tanto interno como externo de la compañía. Dado lo anterior, este proyecto se basa en la extracción de documentación soporte valido, que permita explorar las interacciones entre estos dos campos, los sistemas de control de gestión y el aprendizaje organizacional, además, analizar el impacto de estas interacciones en la perdurabilidad organizacional. ​

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este texto contribuirá a que la institución de salud se organice y prepare la información necesaria para emprender el largo y tortuoso camino de la determinación de la razón costo/beneficio y de la acreditación. Además, podrá ser muy útil para los estudiantes de los programas de pregrado y posgrado de ingeniería biomédica que se quieran especializar en la gestión de tecnologías del equipamiento biomédico y la ingeniería clínica. También podrá ser usado como guía de referencia por personas que estén directamente vinculadas al sector de la salud en departamentos de mantenimiento, ingeniería clínica o de servicios hospitalarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two experiments implement and evaluate a training scheme for learning to apply frequency formats to probability judgements couched in terms of percentages. Results indicate that both conditional and cumulative probability judgements can be improved in this manner, however the scheme is insufficient to promote any deeper understanding of the problem structure. In both experiments, training on one problem type only (either conditional or cumulative risk judgements) resulted in an inappropriate transfer of a learned method at test. The obstacles facing a frequency-based training programme for teaching appropriate use of probability data are discussed. Copyright (c) 2006 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel framework for multimodal semantic-associative collateral image labelling, aiming at associating image regions with textual keywords, is described. Both the primary image and collateral textual modalities are exploited in a cooperative and complementary fashion. The collateral content and context based knowledge is used to bias the mapping from the low-level region-based visual primitives to the high-level visual concepts defined in a visual vocabulary. We introduce the notion of collateral context, which is represented as a co-occurrence matrix, of the visual keywords, A collaborative mapping scheme is devised using statistical methods like Gaussian distribution or Euclidean distance together with collateral content and context-driven inference mechanism. Finally, we use Self Organising Maps to examine the classification and retrieval effectiveness of the proposed high-level image feature vector model which is constructed based on the image labelling results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work analyzes the use of linear discriminant models, multi-layer perceptron neural networks and wavelet networks for corporate financial distress prediction. Although simple and easy to interpret, linear models require statistical assumptions that may be unrealistic. Neural networks are able to discriminate patterns that are not linearly separable, but the large number of parameters involved in a neural model often causes generalization problems. Wavelet networks are classification models that implement nonlinear discriminant surfaces as the superposition of dilated and translated versions of a single "mother wavelet" function. In this paper, an algorithm is proposed to select dilation and translation parameters that yield a wavelet network classifier with good parsimony characteristics. The models are compared in a case study involving failed and continuing British firms in the period 1997-2000. Problems associated with over-parameterized neural networks are illustrated and the Optimal Brain Damage pruning technique is employed to obtain a parsimonious neural model. The results, supported by a re-sampling study, show that both neural and wavelet networks may be a valid alternative to classical linear discriminant models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel framework referred to as collaterally confirmed labelling (CCL) is proposed, aiming at localising the visual semantics to regions of interest in images with textual keywords. Both the primary image and collateral textual modalities are exploited in a mutually co-referencing and complementary fashion. The collateral content and context-based knowledge is used to bias the mapping from the low-level region-based visual primitives to the high-level visual concepts defined in a visual vocabulary. We introduce the notion of collateral context, which is represented as a co-occurrence matrix of the visual keywords. A collaborative mapping scheme is devised using statistical methods like Gaussian distribution or Euclidean distance together with collateral content and context-driven inference mechanism. We introduce a novel high-level visual content descriptor that is devised for performing semantic-based image classification and retrieval. The proposed image feature vector model is fundamentally underpinned by the CCL framework. Two different high-level image feature vector models are developed based on the CCL labelling of results for the purposes of image data clustering and retrieval, respectively. A subset of the Corel image collection has been used for evaluating our proposed method. The experimental results to-date already indicate that the proposed semantic-based visual content descriptors outperform both traditional visual and textual image feature models. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new database of weather and circulation type catalogs is presented comprising 17 automated classification methods and five subjective classifications. It was compiled within COST Action 733 "Harmonisation and Applications of Weather Type Classifications for European regions" in order to evaluate different methods for weather and circulation type classification. This paper gives a technical description of the included methods using a new conceptual categorization for classification methods reflecting the strategy for the definition of types. Methods using predefined types include manual and threshold based classifications while methods producing types derived from the input data include those based on eigenvector techniques, leader algorithms and optimization algorithms. In order to allow direct comparisons between the methods, the circulation input data and the methods' configuration were harmonized for producing a subset of standard catalogs of the automated methods. The harmonization includes the data source, the climatic parameters used, the classification period as well as the spatial domain and the number of types. Frequency based characteristics of the resulting catalogs are presented, including variation of class sizes, persistence, seasonal and inter-annual variability as well as trends of the annual frequency time series. The methodological concept of the classifications is partly reflected by these properties of the resulting catalogs. It is shown that the types of subjective classifications compared to automated methods show higher persistence, inter-annual variation and long-term trends. Among the automated classifications optimization methods show a tendency for longer persistence and higher seasonal variation. However, it is also concluded that the distance metric used and the data preprocessing play at least an equally important role for the properties of the resulting classification compared to the algorithm used for type definition and assignment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the recent years, the area of data mining has been experiencing considerable demand for technologies that extract knowledge from large and complex data sources. There has been substantial commercial interest as well as active research in the area that aim to develop new and improved approaches for extracting information, relationships, and patterns from large datasets. Artificial neural networks (NNs) are popular biologically-inspired intelligent methodologies, whose classification, prediction, and pattern recognition capabilities have been utilized successfully in many areas, including science, engineering, medicine, business, banking, telecommunication, and many other fields. This paper highlights from a data mining perspective the implementation of NN, using supervised and unsupervised learning, for pattern recognition, classification, prediction, and cluster analysis, and focuses the discussion on their usage in bioinformatics and financial data analysis tasks. © 2012 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter introduces the latest practices and technologies in the interactive interpretation of environmental data. With environmental data becoming ever larger, more diverse and more complex, there is a need for a new generation of tools that provides new capabilities over and above those of the standard workhorses of science. These new tools aid the scientist in discovering interesting new features (and also problems) in large datasets by allowing the data to be explored interactively using simple, intuitive graphical tools. In this way, new discoveries are made that are commonly missed by automated batch data processing. This chapter discusses the characteristics of environmental science data, common current practice in data analysis and the supporting tools and infrastructure. New approaches are introduced and illustrated from the points of view of both the end user and the underlying technology. We conclude by speculating as to future developments in the field and what must be achieved to fulfil this vision.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Information systems integration becomes critical in enhancing organisational competitiveness through effective use of information resource provided by the whole host of information systems. Information systems integration in its nature is a process of bringing about the capability of communication and information exchange between systems; while interoperability, often as the result of systems integration, is such a capability. However currently there is a lack of theoretical foundation for representation and measure of the interoperability in organisations. Organisational semiotics provides a theoretical foundation for systems interoperability. A notion of ‘semiotic interoperability’ is proposed in this paper as a paradigm, guiding systems integration and measuring degree of interoperability, covering aspects from physical properties, transmission structure of signs, placing emphasis on communicating meaning, intention to social consequence of information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we review the state-of-the-art techniques in mining data streams for mobile and ubiquitous environments. We start the review with a concise background of data stream processing, presenting the building blocks for mining data streams. In a wide range of applications, data streams are required to be processed on small ubiquitous devices like smartphones and sensor devices. Mobile and ubiquitous data mining target these applications with tailored techniques and approaches addressing scarcity of resources and mobility issues. Two categories can be identified for mobile and ubiquitous mining of streaming data: single-node and distributed. This survey will cover both categories. Mining mobile and ubiquitous data require algorithms with the ability to monitor and adapt the working conditions to the available computational resources. We identify the key characteristics of these algorithms and present illustrative applications. Distributed data stream mining in the mobile environment is then discussed, presenting the Pocket Data Mining framework. Mobility of users stimulates the adoption of context-awareness in this area of research. Context-awareness and collaboration are discussed in the Collaborative Data Stream Mining, where agents share knowledge to learn adaptive accurate models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work presented in this article was performed at the Oriental Institute at the University of Chicago, on objects from their permanent collection: an ancient Egyptian bird mummy and three ancient Sumerian corroded copper-alloy objects. We used a portable, fiber-coupled terahertz time-domain spectroscopic imaging system, which allowed us to measure specimens in both transmission and reflection geometry, and present time- and frequency-based image modes. The results confirm earlier evidence that terahertz imaging can provide complementary information to that obtainable from x-ray CT scans of mummies, giving better visualisation of low density regions. In addition, we demonstrate that terahertz imaging can distinguish mineralized layers in metal artifacts.