294 resultados para fluidity


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oil well cementing materials consist of slurries of Special class Portland cement dispersed in water. Admixtures can be used to provide the necessary fluidity, so the material can be efficiently pumped down as well as penetrate porous rocks with controlled filter loss. Construction admixtures can be used to modify the properties of oil well cements provided they can withstand and hold their properties at the higher than ambient temperatures usually encountered in oil fields. In civil construction, superplasticizer play the role of dispersants that reduce the facto r of water cement improve mechanical properties and fluidity of the cement, whereas anti-segregation agents improve the workability of the slurry. In the present study, oil well cement slurries were produced adding both a dispersant and an anti-segregation agent conventionally used in Portland CPII-Z-32 RS cement aiming at materials for primary cementing and squeeze operations. Three basic aspects were evaluated: fluidity, filter loss and the synergetic effect of the admixtures at two temperatures, i.e., 27°C and 56°C, following API RP 10B practical recommendations. The slurries were prepared using admixture concentrations varying from 2.60 Kgf/m3 (0.02 gallft3) to 5.82 Kgf/m3 (0.045 galJft3) BWOC. The density of the slurries was set to 1.89 g/cm3 (15.8 Ib/gal). 0.30 to 0.60% BWOC of a CMC-based anti-segregation agent was added to the cement to control the filter loss. The results showed that the addition of anti-segregation at concentrations above 0.55% by weight of cement resulted in the increased viscosity of the folders in temperatures evaluated. The increasing the temperature of the tests led to a reduction in the performance of anti-segregation. At concentrations of 5.20 kgf/m3 (0,040 gallft3) and 5.82 Kgf/m3 (0,045 gal/ft 3) observed a better performance of the properties evaluated in the proposed system. At low temperature was observed instability in the readings of rheology for all concentrations of anti-segregation. Contents that increasing the concentration of anti¬-segregation is limited concentrations greater than 0.55 % BWOC of the CMC in temperature analyzed. The use of the system with CMC promoted a good performance against the properties evaluated. The principal function of anti¬-segregation was optimized with increasing concentration of superplasticizer, at temperatures above the 2rC. The study of the behaviour of systemic additives, resulting in slurries of cement, which can be optimized face studies of other intrinsic properties in oil fields

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spatial and temporal fluidity conditioned by the technologies of social interaction online have been allowing that collective actions of protest and activism arise every day in cyberspace - the cyber-activism. If before these actions were located in geographical boundaries, today's demands and mobilizations extrapolate the location, connect to the global, and at the same time, return to the regional through digital virtuality. Within this context of the relationship between digital technology and global flow of sociability, emerges in October 2010 the social movement of the hashtag "#ForaMicarla", which means the dissatisfaction of cibernauts from Natal of Twitter with the current management of the municipality of Natal-RN, Micarla de Sousa (Green Party). We can find in the center of this movement and others who appeared in the world at the same time a technological condition of Twitter, with the hashtag "#". Given this scenario, this research seeks to analyze how the relationship of the agents of movement hashtag "ForaMicarla", based on the principle that it was formed in the Twitter network and is maintained on the platform on a daily basis, it can create a new kind of political culture. Thus, this study discusses theoretically the importance of Twitter and movements that emerge on the platform and through it to understand the social and political demands of the contemporary world and this public sphere, which now seems to include cyberspace

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Humanas, Departamento de Geografia, 2015.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The isolation of adjacent zones encountered during oilwell drilling is carried out by Portland-based cement slurries. The slurries are pumped into the annular positions between the well and the casing. Their rheological behavior is a very important component for the cementing process. Nowadays, several alternative materials are used in oilwell cementing, with goal the modification and the improvement of their properties, mainly the increase of the fluidity. And this can be reached by using plasticizers additives able to account for different oilwell conditions, yielding compatible cement slurries and allowing enough time for the complete cementing operation. If the rheological properties of the slurry are properly characterized, the load loss and flow regime can be correctly predicted. However, this experimental characterization is difficult. Rheological models capable of describing the cement slurry behavior must be capable of predicting the slurry cement deformation within reasonable accuracy. The aim of this study was to characterize rheologically the slurries prepared with a especial class of Portland cement, water and plasticizers based on lignosulfonate, melamine and polycarboxylate at temperatures varying from 27°C to 72°C. The tests were carried out according to the practical recommendations of the API RP 10B guidelines. The results revealed a great efficiency and the dispersive power of the polycarboxylate, for all temperatures tested. This additive promoted high fluidity of the slurries, with no sedimentation. High lignosulfonate and melamine concentrations did not reduce the rheological parameters (plastic viscosity and yield stress) of the slurries. It was verified that these additives were not compatible with the type of cement used. The evaluated rheological models were capable of describing the behavior of the slurries only within concentration and temperature ranges specific for each type of additive

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atualmente e face a uma sociedade em constante mudança, as forças militares precisam ter em conta todos os vetores que compõem as operações. Os vetores descritos são de importância significativa em relação aos efeitos que as operações pretendem alcançar. Procedimentos não-cinéticos permitirão a um comandante obter diferentes resultados que não poderiam ser alcançados sob uma forma cinética. Este estudo pretende elucidar relativamente aos aspetos psicológicos dentro do espectro não-cinético das operações, a fim de destacar as suas habilidades e contribuições num país como o Afeganistão, que depende de ajuda externa para garantir uma melhor fluidez e prosperidade das suas instituições. Operações psicológicas desempenham um contributo fundamental para formas não-cinéticas que levarão a estabilização dessas operações, onde as mudanças comportamentais afetadas contribuirão positivamente para o resultado desejado. E é um trabalho de investigação que não procura alcançar novos conhecimentos, o método hipotético-dedutivo deve aplicar-se, onde, inicialmente, os dados são obtidos por meio da análise de documentos seguidos das entrevistas necessárias que permitirão uma comparação com a doutrina existente. Sendo as operações psicológicas um vetor de ação e embora não sendo uma prioridade, estas agem diretamente sobre o "cérebro da população", estimulando e encorajando mudanças de comportamento contribuindo assim para uma melhor estabilização do teatro de operações.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The primary cementing is an important step in the oilwell drilling process, ensuring the mechanical stability of the well and the hydraulic isolation between casing and formation. For slurries to meet the requirements for application in a certain well, some care in the project should be taken into account to obtain a cement paste with the proper composition. In most cases, it is necessary to add chemicals to the cement to modify its properties, according to the operation conditions and thus obtain slurries that can move inside the jacket providing a good displacement to the interest area. New technologies of preparation and use of chemicals and modernization of technological standards in the construction industry have resulted in the development of new chemical additives for optimizing the properties of building materials. Products such as polycarboxylate superplasticizers provide improved fluidity and cohesion of the cement grains, in addition to improving the dispersion with respect to slurries without additives. This study aimed at adapting chemical additives used in civil construction to be used use in oilwell cement slurries systems, using Portland cement CPP-Special Class as the hydraulic binder. The chemical additives classified as defoamer, dispersant, fluid loss controller and retarder were characterized by infrared absorption spectroscopy, thermogravimetric analyses and technological tests set by the API (American Petroleum Institute). These additives showed satisfactory results for its application in cement slurries systems for oil wells. The silicone-based defoamer promoted the reduction of air bubbles incorporated during the stirring of the slurries. The dispersant significantly reduced the rheological parameters of the systems studied. The tests performed with the fluid loss controller and the retarder also resulted in suitable properties for application as chemical additives in cement slurries

Relevância:

10.00% 10.00%

Publicador:

Resumo:

FAULT LINE examines the fragile humanity connected to the themes of sexuality, violence, addiction, family dynamics, and death. The book is not broken into sections; rather, as poems build upon one another to explore a narrative arc, FAULT LINE tracks a single speaker’s experience from girlhood to the verge of independent womanhood. The speaker employs formal structures such as the prose poem, sestina, and particularly the list poem to examine the fluidity of inner experience and also the culture at large while challenging the narrow definitions of femininity and masculinity. FAULT LINE works to not only address the question of blame but also the literal breaks in lines of poetry. By looking at a single speaker’s struggle, the book, like life, is both humorous and horrifying.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract : Although concrete is a relatively green material, the astronomical volume of concrete produced worldwide annually places the concrete construction sector among the noticeable contributors to the global warming. The most polluting constituent of concrete is cement due to its production process which releases, on average, 0.83 kg CO[subscript 2] per kg of cement. Self-consolidating concrete (SCC), a type of concrete that can fill in the formwork without external vibration, is a technology that can offer a solution to the sustainability issues of concrete industry. However, all of the workability requirements of SCC originate from a higher powder content (compared to conventional concrete) which can increase both the cost of construction and the environmental impact of SCC for some applications. Ecological SCC, Eco-SCC, is a recent development combing the advantages of SCC and a significantly lower powder content. The maximum powder content of this concrete, intended for building and commercial construction, is limited to 315 kg/m[superscript 3]. Nevertheless, designing Eco-SCC can be challenging since a delicate balance between different ingredients of this concrete is required to secure a satisfactory mixture. In this Ph.D. program, the principal objective is to develop a systematic design method to produce Eco-SCC. Since the particle lattice effect (PLE) is a key parameter to design stable Eco-SCC mixtures and is not well understood, in the first phase of this research, this phenomenon is studied. The focus in this phase is on the effect of particle-size distribution (PSD) on the PLE and stability of model mixtures as well as SCC. In the second phase, the design protocol is developed, and the properties of obtained Eco-SCC mixtures in both fresh and hardened states are evaluated. Since the assessment of robustness is crucial for successful production of concrete on large-scale, in the final phase of this work, the robustness of one the best-performing mixtures of Phase II is examined. It was found that increasing the volume fraction of a stable size-class results in an increase in the stability of that class, which in turn contributes to a higher PLE of the granular skeleton and better stability of the system. It was shown that a continuous PSD in which the volume fraction of each size class is larger than the consecutive coarser class can increase the PLE. Using such PSD was shown to allow for a substantial increase in the fluidity of SCC mixture without compromising the segregation resistance. An index to predict the segregation potential of a suspension of particles in a yield stress fluid was proposed. In the second phase of the dissertation, a five-step design method for Eco-SCC was established. The design protocol started with the determination of powder and water contents followed by the optimization of sand and coarse aggregate volume fractions according to an ideal PSD model (Funk and Dinger). The powder composition was optimized in the third step to minimize the water demand while securing adequate performance in the hardened state. The superplasticizer (SP) content of the mixtures was determined in next step. The last step dealt with the assessment of the global warming potential of the formulated Eco-SCC mixtures. The optimized Eco-SCC mixtures met all the requirements of self-consolidation in the fresh state. The 28-day compressive strength of such mixtures complied with the target range of 25 to 35 MPa. In addition, the mixtures showed sufficient performance in terms of drying shrinkage, electrical resistivity, and frost durability for the intended applications. The eco-performance of the developed mixtures was satisfactory as well. It was demonstrated in the last phase that the robustness of Eco-SCC is generally good with regards to water content variations and coarse aggregate characteristics alterations. Special attention must be paid to the dosage of SP during batching.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract : Recently, there is a great interest to study the flow characteristics of suspensions in different environmental and industrial applications, such as snow avalanches, debris flows, hydrotransport systems, and material casting processes. Regarding rheological aspects, the majority of these suspensions, such as fresh concrete, behave mostly as non-Newtonian fluids. Concrete is the most widely used construction material in the world. Due to the limitations that exist in terms of workability and formwork filling abilities of normal concrete, a new class of concrete that is able to flow under its own weight, especially through narrow gaps in the congested areas of the formwork was developed. Accordingly, self-consolidating concrete (SCC) is a novel construction material that is gaining market acceptance in various applications. Higher fluidity characteristics of SCC enable it to be used in a number of special applications, such as densely reinforced sections. However, higher flowability of SCC makes it more sensitive to segregation of coarse particles during flow (i.e., dynamic segregation) and thereafter at rest (i.e., static segregation). Dynamic segregation can increase when SCC flows over a long distance or in the presence of obstacles. Therefore, there is always a need to establish a trade-off between the flowability, passing ability, and stability properties of SCC suspensions. This should be taken into consideration to design the casting process and the mixture proportioning of SCC. This is called “workability design” of SCC. An efficient and non-expensive workability design approach consists of the prediction and optimization of the workability of the concrete mixtures for the selected construction processes, such as transportation, pumping, casting, compaction, and finishing. Indeed, the mixture proportioning of SCC should ensure the construction quality demands, such as demanded levels of flowability, passing ability, filling ability, and stability (dynamic and static). This is necessary to develop some theoretical tools to assess under what conditions the construction quality demands are satisfied. Accordingly, this thesis is dedicated to carry out analytical and numerical simulations to predict flow performance of SCC under different casting processes, such as pumping and tremie applications, or casting using buckets. The L-Box and T-Box set-ups can evaluate flow performance properties of SCC (e.g., flowability, passing ability, filling ability, shear-induced and gravitational dynamic segregation) in casting process of wall and beam elements. The specific objective of the study consists of relating numerical results of flow simulation of SCC in L-Box and T-Box test set-ups, reported in this thesis, to the flow performance properties of SCC during casting. Accordingly, the SCC is modeled as a heterogeneous material. Furthermore, an analytical model is proposed to predict flow performance of SCC in L-Box set-up using the Dam Break Theory. On the other hand, results of the numerical simulation of SCC casting in a reinforced beam are verified by experimental free surface profiles. The results of numerical simulations of SCC casting (modeled as a single homogeneous fluid), are used to determine the critical zones corresponding to the higher risks of segregation and blocking. The effects of rheological parameters, density, particle contents, distribution of reinforcing bars, and particle-bar interactions on flow performance of SCC are evaluated using CFD simulations of SCC flow in L-Box and T-box test set-ups (modeled as a heterogeneous material). Two new approaches are proposed to classify the SCC mixtures based on filling ability and performability properties, as a contribution of flowability, passing ability, and dynamic stability of SCC.