976 resultados para final disposal of spent nuclear fuel


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Podospora anserina is a filamentous fungus with a limited life span. Life span is controlled by nuclear and extranuclear genetic traits. Herein we report the nature of four alterations in the nuclear gene grisea that lead to an altered morphology, a defect in the formation of female gametangia, and an increased life span. Three sequence changes are located in the 5′ upstream region of the grisea ORF. One mutation is a G → A transition at the 5′ splice site of the single intron of the gene, leading to a RNA splicing defect. This loss-of-function affects the amplification of the first intron of the mitochondrial cytochrome c oxidase subunit I gene (COI) and the specific mitochondrial DNA rearrangements that occur during senescence of wild-type strains. Our results indicate that the nuclear gene grisea is part of a molecular machinery involved in the control of mitochondrial DNA reorganizations. These DNA instabilities accelerate but are not a prerequisite for the aging of P. anserina cultures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Communication between the 5′ and 3′ ends is a common feature of several aspects of eukaryotic mRNA metabolism. In the nucleus, the pre-mRNA 5′ end is bound by the nuclear cap binding complex (CBC). This RNA–protein complex plays an active role in both splicing and RNA export. We provide evidence for participation of CBC in the processing of the 3′ end of the message. Depletion of CBC from HeLa cell nuclear extract strongly reduced the endonucleolytic cleavage step of the cleavage and polyadenylation process. Cleavage was restored by addition of recombinant CBC. CBC depletion was found to reduce the stability of poly(A) site cleavage complexes formed in nuclear extract. We also provide evidence that the communication between the 5′ and 3′ ends of the pre-mRNA during processing is mediated by the physical association of the CBC/cap complex with 3′ processing factors bound at the poly(A) site. These observations, along with previous data on the function of CBC in splicing, illustrate the key role played by CBC in pre-mRNA recognition and processing. The data provides further support for the hypothesis that pre-mRNAs and mRNAs may exist and be functional in the form of “closed-loops,” due to interactions between factors bound at their 5′ and 3′ ends.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shortly after the synthesis of the two cells required for sporulation in Bacillus subtilis, the membranes of the larger mother cell begin to migrate around and engulf the smaller forespore cell. At the completion of this process the leading edges of the migrating membrane meet and fuse, releasing the forespore into the mother cell cytoplasm. We developed a fluorescent membrane stain-based assay for this membrane fusion event, and we isolated mutants defective in the final stages of engulfment or membrane fusion. All had defects in spoIIIE, which is required for translocation of the forespore chromosome across the polar septum. We isolated one spoIIIE mutant severely defective in chromosome translocation, but not in membrane fusion; this mutation disrupts the ATP/GTP-binding site of SpoIIIE, suggesting that ATP binding and hydrolysis are required for DNA translocation but not for the late engulfment function of SpoIIIE. We also correlated relocalization of SpoIIIE-green fluorescent protein from the sporulation septum to the forespore pole with the completion of membrane fusion and engulfment. We suggest that SpoIIIE is required for the final steps of engulfment and that it may regulate or catalyze membrane fusion events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transcription factors nuclear factor of activated T cells (NFAT) and activator protein 1 (AP-1) coordinately regulate cytokine gene expression in activated T-cells by binding to closely juxtaposed sites in cytokine promoters. The structural basis for cooperative binding of NFAT and AP-1 to these sites, and indeed for the cooperative binding of transcription factors to composite regulatory elements in general, is not well understood. Mutagenesis studies have identified a segment of AP-1, which lies at the junction of its DNA-binding and dimerization domains (basic region and leucine zipper, respectively), as being essential for protein–protein interactions with NFAT in the ternary NFAT/AP-1/DNA complex. In a model of the ternary complex, the segment of NFAT nearest AP-1 is the Rel insert region (RIR), a feature that is notable for its hypervariability in size and in sequence amongst members of the Rel transcription factor family. Here we have used mutational analysis to study the role of the NFAT RIR in binding to DNA and AP-1. Parallel yeast one-hybrid screening assays in combination with alanine-scanning mutagenesis led to the identification of four amino acid residues in the RIR of NFAT2 (also known as NFATC1 or NFATc) that are essential for cooperativity with AP-1 (Ile-544, Glu-545, Thr-551, and Ile-553), and three residues that are involved in interactions with DNA (Lys-538, Arg-540, and Asn-541). These results were confirmed and extended through in vitro binding assays. We thus conclude that the NFAT RIR plays an essential dual role in DNA recognition and cooperative binding to AP-1 family transcription factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Growth hormone (GH) binding to its receptor modulates gene transcription by influencing the amount or activity of transcription factors. In the rat, GH exerts sexually dimorphic effects on liver gene transcription through its pattern of secretion which is intermittent in males and continuous in females. The expression of the CYP2C12 gene coding for the female-specific cytochrome P450 2C12 protein is dependent on the continuous exposure to GH. To identify the transcription factor(s) that mediate(s) this sex-dependent GH effect, we studied the interactions of the CYP2C12 promoter with liver nuclear proteins obtained from male and female rats and from hypophysectomized animals treated or not by continuous GH infusion. GH treatment induced the binding of a protein that we identified as hepatocyte nuclear factor (HNF) 6, the prototype of a novel class of homeodomain transcription factors. HNF-6 competed with HNF-3 for binding to the same site in the CYP2C12 promoter. This HNF-6/HNF-3 binding site conveyed both HNF-6- and HNF-3-stimulated transcription of a reporter gene construct in transient cotransfection experiments. Electrophoretic mobility shift assays showed more HNF-6 DNA-binding activity in female than in male liver nuclear extracts. Liver HNF-6 mRNA was barely detectable in the hypophysectomized rats and was restored to normal levels by GH treatment. This work provides an example of a homeodomain-containing transcription factor that is GH-regulated and also reports on the hormonal regulation of HNF-6.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nuclear hormone receptors are potent repressors of transcription in the unliganded state. We describe here the cloning of a nuclear receptor corepressor that we call SUN-CoR (Small Unique Nuclear receptor CoRepressor), which shows no homology to previously described nuclear hormone receptor corepressors, N-CoR, or SMRT. SUN-CoR is a highly basic, 16-kDa nuclear protein that is expressed at high levels in adult tissues and is induced during adipocyte and myogenic differentiation. SUN-CoR potentiates transcriptional repression by thyroid hormone receptor and RevErb in vivo, represses transcription when fused to a heterologous DNA binding domain, and interacts with RevErb as well as with thyroid hormone receptor in vitro. SUN-CoR also interacts with N-CoR and SMRT in vitro and with endogenous N-CoR in cells. We conclude that SUN-CoR is a corepressor and may function as an additional component of the complex involved in transcriptional repression by unliganded and orphan nuclear hormone receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nucleus of spermatocytes provides during the first meiotic prophase an interesting model for investigating relationships of the nuclear envelope (NE) with components of the nuclear interior. During the pachytene stage, meiotic chromosomes are synapsed via synaptonemal complexes (SCs) and attached through both ends to the nuclear periphery. This association is dynamic because chromosomes move during the process of synapsis and desynapsis that takes place during meiotic prophase. The NE of spermatocytes possesses some peculiarities (e.g., lower stability than in somatic cells, expression of short meiosis-specific lamin isoforms called C2 and B3) that could be critically involved in this process. For better understanding of the association of chromosomes with the nuclear periphery, in the present study we have investigated the distribution of NE proteins in relation to SC attachment sites. A major outcome was the finding that lamin C2 is distributed in the form of discontinuous domains at the NE of spermatocytes and that SC attachment sites are embedded in these domains. Lamin C2 appears to form part of larger structures as suggested by cell fractionation experiments. According to these results, we propose that the C2-containing domains represent local reinforcements of the NE that are involved in the proper attachment of SCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Histones found within transcriptionally competent and active regions of the genome are highly acetylated. Moreover, these highly acetylated histones have very short half-lives. Thus, both histone acetyltransferases and histone deacetylases must enrich within or near these euchromatic regions of the interphase chromatids. Using an antibody specific for highly acetylated histone H3, we have investigated the organization of transcriptionally active and competent chromatin as well as nuclear histone acetyltransferase and deacetylase activities. We observe an exclusion of highly acetylated chromatin around the periphery of the nucleus and an enrichment near interchromatin granule clusters (IGCs). The highly acetylated chromatin is found in foci that may reflect the organization of highly acetylated chromatin into “chromonema” fibers. Transmission electron microscopy of Indian muntjac fibroblast cell nuclei indicates that the chromatin associated with the periphery of IGCs remains relatively condensed, most commonly found in domains containing chromatin folded beyond 30 nm. Using electron spectroscopic imaging, we demonstrate that IGCs are clusters of ribonucleoprotein particles. The individual granules comprise RNA-rich fibrils or globular regions that fold into individual granules. Quantitative analysis of individual granules indicates that they contain variable amounts of RNA estimated between 1.5 and >10 kb. We propose that interchromatin granules are heterogeneous nuclear RNA-containing particles, some of which may be pre-mRNA generated by nearby transcribed chromatin. An intermediary zone between the IGC and surrounding chromatin is described that contains factors with the potential to provide specificity to the localization of sequences near IGCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RanBP2, a protein containing FG repeat motifs and four binding sites for the guanosine triphosphatase Ran, is localized at the cytoplasmic periphery of the nuclear pore complex (NPC) and is believed to play a critical role in nuclear protein import. We purified RanBP2 from rat liver nuclear envelopes and examined its structural and biochemical properties. Electron microscopy showed that RanBP2 forms a flexible filamentous molecule with a length of ∼36 nm, suggesting that it comprises a major portion of the cytoplasmic fibrils implicated in initial binding of import substrates to the NPC. Using in vitro assays, we characterized the ability of RanBP2 to bind p97, a cytosolic factor implicated in the association of the nuclear localization signal receptor with the NPC. We found that RanGTP promotes the binding of p97 to RanBP2, whereas it inhibits the binding of p97 to other FG repeat nucleoporins. These data suggest that RanGTP acts to specifically target p97 to RanBP2, where p97 may support the binding of an nuclear localization signal receptor/substrate complex to RanBP2 in an early step of nuclear import.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have examined the distribution of RNA transcription and processing factors in the amphibian oocyte nucleus or germinal vesicle. RNA polymerase I (pol I), pol II, and pol III occur in the Cajal bodies (coiled bodies) along with various components required for transcription and processing of the three classes of nuclear transcripts: mRNA, rRNA, and pol III transcripts. Among these components are transcription factor IIF (TFIIF), TFIIS, splicing factors, the U7 small nuclear ribonucleoprotein particle, the stem–loop binding protein, SR proteins, cleavage and polyadenylation factors, small nucleolar RNAs, nucleolar proteins that are probably involved in pre-rRNA processing, and TFIIIA. Earlier studies and data presented here show that several of these components are first targeted to Cajal bodies when injected into the oocyte and only subsequently appear in the chromosomes or nucleoli, where transcription itself occurs. We suggest that pol I, pol II, and pol III transcription and processing components are preassembled in Cajal bodies before transport to the chromosomes and nucleoli. Most components of the pol II transcription and processing pathway that occur in Cajal bodies are also found in the many hundreds of B-snurposomes in the germinal vesicle. Electron microscopic images show that B-snurposomes consist primarily, if not exclusively, of 20- to 30-nm particles, which closely resemble the interchromatin granules described from sections of somatic nuclei. We suggest the name pol II transcriptosome for these particles to emphasize their content of factors involved in synthesis and processing of mRNA transcripts. We present a model in which pol I, pol II, and pol III transcriptosomes are assembled in the Cajal bodies before export to the nucleolus (pol I), to the B-snurposomes and eventually to the chromosomes (pol II), and directly to the chromosomes (pol III). The key feature of this model is the preassembly of the transcription and processing machinery into unitary particles. An analogy can be made between ribosomes and transcriptosomes, ribosomes being unitary particles involved in translation and transcriptosomes being unitary particles for transcription and processing of RNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here, we describe the identification and characterization of a nuclear body (matrix-associated deacetylase body) whose formation and integrity depend on deacetylase activity. Typically, there are 20–40 0.5-μM bodies per nucleus, although the size and number can vary substantially. The structure appears to contain both class I and the recently described class II histone deacetylases (HDAC)5 and 7 along with the nuclear receptor corepressors SMRT (silencing mediator for retinoid and thyroid receptor) and N-CoR (nuclear receptor corepressor). Addition of the deacetylase inhibitors trichostatin A and sodium butyrate completely disrupt these nuclear bodies, providing a demonstration that the integrity of a nuclear body is enzyme dependent. We demonstrate that HDAC5 and 7 can associate with at least 12 distinct proteins, including several members of the NuRD and Sin3A repression complexes, and appear to define a new but related complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The α- and β-karyopherins (Kaps), also called importins, mediate the nuclear transport of proteins. All α-Kaps contain a central domain composed of eight approximately 40 amino acid, tandemly arranged, armadillo-like (Arm) repeats. The number and order of these repeats have not changed since the common origin of fungi, plants, and mammals. Phylogenetic analysis suggests that the various α-Kaps fall into two groups, α1 and α2. Whereas animals encode both types, the yeast genome encodes only an α1-Kap. The β-Kaps are characterized by 14–15 tandemly arranged HEAT motifs. We show that the Arm repeats of α-Kaps and the HEAT motifs of β-Kaps are similar, suggesting that the α-Kaps and β-Kaps (and for that matter, all Arm and HEAT repeat-containing proteins) are members of the same protein superfamily. Phylogenetic analysis indicates that there are at least three major groups of β-Kaps, consistent with their proposed cargo specificities. We present a model in which an α-independent β-Kap progenitor gave rise to the α-dependent β-Kaps and the α-Kaps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cell wall imparts structural strength and shape to bacteria. It is made up of polymeric glycan chains with peptide branches that are cross-linked to form the cell wall. The cross-linking reaction, catalyzed by transpeptidases, is the last step in cell wall biosynthesis. These enzymes are members of the family of penicillin-binding proteins, the targets of β-lactam antibiotics. We report herein the structure of a penicillin-binding protein complexed with a cephalosporin designed to probe the mechanism of the cross-linking reaction catalyzed by transpeptidases. The 1.2-Å resolution x-ray structure of this cephalosporin bound to the active site of the bifunctional serine type d-alanyl-d-alanine carboxypeptidase/transpeptidase (EC 3.4.16.4) from Streptomyces sp. strain R61 reveals how the two peptide strands from the polymeric substrates are sequestered in the active site of a transpeptidase. The structure of this complex provides a snapshot of the enzyme and the bound cell wall components poised for the final and critical cross-linking step of cell wall biosynthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Viruses with RNA genomes often capture and redirect host cell components to assist in mechanisms particular to RNA-dependent RNA synthesis. The nidoviruses are an order of positive-stranded RNA viruses, comprising coronaviruses and arteriviruses, that employ a unique strategy of discontinuous transcription, producing a series of subgenomic mRNAs linking a 5′ leader to distal portions of the genome. For the prototype coronavirus mouse hepatitis virus (MHV), heterogeneous nuclear ribonucleoprotein (hnRNP) A1 has been shown to be able to bind in vitro to the negative strand of the intergenic sequence, a cis-acting element found in the leader RNA and preceding each downstream ORF in the genome. hnRNP A1 thus has been proposed as a host factor in MHV transcription. To test this hypothesis genetically, we initially constructed MHV mutants with a very high-affinity hnRNP A1 binding site inserted in place of, or adjacent to, an intergenic sequence in the MHV genome. This inserted hnRNP A1 binding site was not able to functionally replace, or enhance transcription from, the intergenic sequence. This finding led us to test more directly the role of hnRNP A1 by analysis of MHV replication and RNA synthesis in a murine cell line that does not express this protein. The cellular absence of hnRNP A1 had no detectable effect on the production of infectious virus, the synthesis of genomic RNA, or the quantity or quality of subgenomic mRNAs. These results strongly suggest that hnRNP A1 is not a required host factor for MHV discontinuous transcription or genome replication.