975 resultados para expression pattern development


Relevância:

90.00% 90.00%

Publicador:

Resumo:

To test whether yeast artificial chromosomes (YACs) can be used in the investigation of mammalian development, we analyzed the phenotypes of transgenic mice carrying two types of beta-globin locus YAC developmental mutants: (i) mice carrying a G-->A transition at position -117 of the A gamma gene, which is responsible for the Greek A gamma form of hereditary persistence of fetal hemoglobin (HPFH), and (ii) beta-globin locus YAC transgenic lines carrying delta- and beta-globin gene deletions with 5' breakpoints similar to those of deletional HPFH and delta beta-thalassemia syndromes. The mice carrying the -117 A gamma G-->A mutation displayed a delayed gamma- to beta-globin gene switch and continued to express A gamma-globin chains in the adult stage of development as expected for carriers of Greek HPFH, indicating that the YAC/transgenic mouse system allows the analysis of the developmental role of cis-acting motifs. The analysis of mice carrying 3' deletions first provided evidence in support of the hypothesis that imported enhancers are responsible for the phenotypes of deletional HPFH and second indicated that autonomous silencing is the primary mechanism for turning off the gamma-globin genes in the adult. Collectively, our results suggest that transgenic mice carrying YAC mutations provide a useful model for the analysis of the control of gene expression during development.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Parcela considerável de pacientes com distúrbios de crescimento não têm a causa de seus quadros clínicos estabelecida, incluindo aproximadamente 50% dos pacientes com diagnóstico clínico de síndrome de Silver−Russell (SRS) e 10-20% dos pacientes com síndrome de Beckwith-Wiedemann (BWS). O objetivo deste estudo foi investigar as causas genéticas e epigenéticas de distúrbios de crescimento, de etiologia desconhecida, numa contribuição para o entendimento de mecanismos que regulam o crescimento. O estudo compreendeu: (1) a investigação de microdesequilíbrios cromossômicos, por aCGH; (2) a análise do perfil de expressão alelo-específica de genes sujeitos a imprinting (IG), por pirossequenciamento (PSQ) ou sequenciamento de Sanger; (3) a investigação do padrão de metilação global em pacientes com restrição de crescimento, utilizando microarray de metilação. A casuística constituiu-se de 41 pacientes não aparentados, com distúrbios de crescimento, de etiologia desconhecida: (1) 25, com hipótese diagnóstica de SRS; (2) seis, com restrição de crescimento intrauterino e peso ao nascimento abaixo do 10º percentil, associados a outros sinais clínicos; (3) sete, com hipótese diagnóstica de BWS; e (4) três, com macrossomia pré-natal ou pós-natal, associada a outros sinais. A investigação de microdesequilíbrios cromossômicos foi realizada em 40 pacientes. Foram detectadas 58 variantes raras em 30/40 pacientes (75%): 40 foram consideradas provavelmente benignas (18 pacientes, 45%), 12, com efeito patogênico desconhecido (11 pacientes, 27,5%), duas, provavelmente patogênicas (um paciente, 2,5%) e quatro, patogênicas (três pacientes, 7,5%). Essas frequências são comparáveis àquelas descritas em estudos que investigaram CNV em grupos de pacientes com distúrbios de crescimento e outras alterações congênitas, incluindo SRS, e mostram a importância da investigação de microdesequilíbrios cromossômicos nesses pacientes. A diversidade dos microdesequilíbrios cromossômicos identificados é reflexo da heterogeneidade clínica das casuísticas. Neste estudo, muitos dos pacientes com hipótese diagnóstica de SRS e BWS apresentavam sinais clínicos atípicos, explicando a ausência neles das alterações (epi)genéticas que causam essas síndromes. A identificação de CNV características de outras síndromes reflete a sobreposição de sinais clínicos com BWS e SRS. A análise do perfil de expressão alelo-específica de IG foi realizada em um subgrupo de 18 pacientes com restrição de crescimento. Trinta IG com função em proliferação celular, crescimento fetal ou neurodesenvolvimento foram inicialmente selecionados. Após seleção de SNP transcritos com alta frequência na população, genotipagem de pacientes, genitores e indivíduos controle, determinação da expressão dos IG em sangue periférico e seu padrão de expressão (mono ou bialélico), 13 IG, expressos no sangue, tiveram a expressão alelo-específica avaliada, sete deles por PSQ e seis por sequenciamento de Sanger. Alterações no perfil de expressão de dois genes, de expressão normalmente paterna, foram detectadas em 4/18 pacientes (22%). Este estudo é o primeiro a utilizar pirossequenciamento e sequenciamento de Sanger na avaliação do perfil de expressão alelo-específica de IG, em pacientes com restrição de crescimento. Apesar de terem limitações, ambas as técnicas mostraram-se robustas e revelaram alterações de expressão alélica interessantes; entretanto, a relação dessas alterações com o quadro clínico dos pacientes permanece por esclarecer. A investigação da metilação global do DNA foi realizada em subgrupo de 21 pacientes com restrição de crescimento e em 24 indivíduos controle. Dois tipos de análise foram realizados: (1) análise diferencial de grupo e (2) análise diferencial individual. Na primeira análise, em que foi comparado o padrão de metilação do grupo de pacientes com quadro clínico sugestivo de SRS (n=16) com o do grupo controle (n=24), não houve indicação de hipo ou hipermetilação global no grupo SRS. Na segunda análise, foi comparado o padrão de metilação de cada um dos 21 pacientes com restrição de crescimento e dos 24 indivíduos controle, com o padrão de metilação do grupo controle. O número médio de CpG hipermetilados e de segmentos diferencialmente metilados (SDM) foi significativamente maior nos pacientes. Foram identificados 82 SDM hipermetilados, estando 57 associados a gene(s) (69,5%), em 16 pacientes, e 51 SDM hipometilados, 41 deles associados a gene(s) (80,4%), em 10 pacientes. A análise de ontologia genética dos 61 genes associados aos SDM hipo ou hipermetilados nos pacientes destacou genes que atuam no desenvolvimento e na morfogênese do sistema esquelético e de órgãos fetais, e na regulação da transcrição gênica e de processos metabólicos. Alterações de metilação em genes que atuam em processos de proliferação e diferenciação celulares e crescimento foram identificadas em 9/20 dos pacientes (45%), sugerindo implicação clínica. Não foi detectada alteração epigenética comum aos pacientes com diagnóstico clínico de SRS, explicável provavelmente pela heterogeneidade clínica. A investigação de metilação global, utilizando microarray, produziu novos dados que podem contribuir para a compreensão de mecanismos moleculares que influenciam o crescimento pré- e pós-natal. Na translocação aparentemente equilibrada - t(5;6)(q35.2;p22.3)dn, detectada em paciente com suspeita clínica de SRS, a interrupção de um gene, pela quebra no cromossomo 6, pode ser a causa do quadro clínico; alternativamente, a translocação pode ter impactado a regulação de genes de desenvolvimento localizados próximos aos pontos de quebra. A análise de expressão em sangue periférico mostrou que os níveis de cDNA do gene, interrompido pelo ponto de quebra da translocação, estavam reduzidos à metade. Além de sinais típicos da SRS, a paciente apresentava algumas características clínicas sugestivas de displasia cleidocraniana. Assim, a translocação t(5;6) pode ter alterado a interação de genes de desenvolvimento e seus elementos reguladores, levando à desregulação de sua expressão espaço-temporal, e resultando num fenótipo atípico, com características sobrepostas de mais de uma síndrome genética

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Os microRNAs (miRNAs) são pequenos RNAs endógenos não codantes de 21-24 nucleotídeos (nt) que regulam a expressão gênica de genes-alvos. Eles estão envolvidos em diversos aspectos de desenvolvimento da planta, tanto na parte aérea, quanto no sistema radicular. Entre os miRNAs, o miRNA156 (miR156) regula a família de fatores de transcrição SQUAMOSA Promoter-Binding Protein-Like (SPL) afetando diferentes processos do desenvolvimento vegetal. Estudos recentes mostram que a via gênica miR156/SPL apresenta efeito positivo tanto no aumento da formação de raízes laterais, quanto no aumento de regeneração de brotos in vitro a partir de folhas e hipocótilos em Arabidopsis thaliana. Devido ao fato de que a origem da formação de raiz lateral e a regeneração in vitro de brotos a partir de raiz principal compartilham semelhanças anatômicas e moleculares, avaliou-se no presente estudo se a via miR156/SPL, da mesma forma que a partir de explantes aéreos, também é capaz de influenciar na regeneração de brotos in vitro a partir de explantes radiculares. Para tanto foram comparados taxa de regeneração, padrão de distribuição de auxina e citocinina, análises histológicas e histoquímicas das estruturas regeneradas em plantas com via miR156/SPL alterada, incluindo planta mutante hyl1, na qual a produção desse miRNA é severamente reduzida. Além disso, foi avaliado o padrão de expressão do miR156 e específicos genes SPL durante a regeneração de brotos in vitro a partir da raiz principal de Arabidopsis thaliana. No presente trabalho observou-se que a alteração da via gênica miR156/SPL é capaz de modular a capacidade de regeneração de brotos in vitro a partir de raiz principal de Arabidopsis thaliana e a distribuição de auxina e citocinina presente nas células e tecidos envolvidos no processo de regeneração. Plantas superexpressando o miR156 apresentaram redução no número de brotos regenerados, além de ter o plastochron reduzido quando comparado com plantas controle. Adicionalmente, plantas contento o gene SPL9 resistente à clivagem pelo miR156 (rSPL9) apresentaram severa redução na quantidade de brotos, além de terem o plastochron alongado. Interessantemente, plantas mutantes hyl1-2 e plantas rSPL10 não apresentaram regeneração de brotos ao longo da raiz principal, mas sim intensa formação de raízes laterais e protuberâncias, respectivamente, tendo essa última apresentado indícios de diferenciação celular precoce. Tomados em conjunto os dados sugerem que o miR156 apresenta importante papel no controle do processo de regeneração de brotos in vitro. Entretanto, esse efeito é mais complexo em regeneração in vitro a partir de raízes do que a partir de cotilédones ou hipocótilos.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ubiquitin–proteasome system (UPS) is the main intracellular pathway for modulated protein turnover, playing an important role in the maintenance of cellular homeostasis. It also exerts a protein quality control through degradation of oxidized, mutant, denatured, or misfolded proteins and is involved in many biological processes where protein level regulation is necessary. This system allows the cell to modulate its protein expression pattern in response to changing physiological conditions and provides a critical protective role in health and disease. Impairments of UPS function in the central nervous system (CNS) underlie an increasing number of genetic and idiopathic diseases, many of which affect the retina. Current knowledge on the UPS composition and function in this tissue, however, is scarce and dispersed. This review focuses on UPS elements reported in the retina, including ubiquitinating and deubiquitinating enzymes (DUBs), and alternative proteasome assemblies. Known and inferred roles of protein ubiquitination, and of the related, SUMO conjugation (SUMOylation) process, in normal retinal development and adult homeostasis are addressed, including modulation of the visual cycle and response to retinal stress and injury. Additionally, the relationship between UPS dysfunction and human neurodegenerative disorders affecting the retina, including Alzheimer's, Parkinson's, and Huntington's diseases, are dealt with, together with numerous instances of retina-specific illnesses with UPS involvement, such as retinitis pigmentosa, macular degenerations, glaucoma, diabetic retinopathy (DR), and aging-related impairments. This information, though still basic and limited, constitutes a suitable framework to be expanded in incoming years and should prove orientative toward future therapy design targeting sight-affecting diseases with a UPS underlying basis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A critical gene involved in mammalian sex determination and differentiation is the Sty-related gene Sox9. In reptiles, Sox9 resembles that of mammals in both structure and expression pattern in the developing gonad, but a causal role in male sex determination has not been established. A closely related gene, Sox8, is conserved in human, mouse, and trout and is expressed in developing testes and not developing ovaries in mouse. In this study, we tested the possibility of Sox8 being important for sex determination or sex differentiation in the red-eared slider turtle Trachemys scripta, in which sex is determined by egg incubation temperature between stages 15 and 20. We cloned partial turtle Sox8 and anti-Mullerian hormone (Amh) cDNAs, and analyzed the expression patterns of these genes in developing gonads by reverse transcriptase-polymerase chain reaction and whole-mount in situ hybridization. While Amh is expressed more strongly in males than in females at stage 17, Sox8 is expressed at similar levels in males and females throughout the sex-determining period. These observations suggest that differential transcription of Sill is not responsible for regulation of Amh, nor responsible for sex determination in turtle. (C) 2004 Wiley-Liss, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Although many of the molecular interactions in kidney development are now well understood, the molecules involved in the specification of the metanephric mesenchyme from surrounding intermediate mesoderm and, hence, the formation of the renal progenitor population are poorly characterized. In this study, cDNA microarrays were used to identify genes enriched in the murine embryonic day 10.5 (E10.5) uninduced metanephric mesenchyme, the renal progenitor population, in comparison with more rostral derivatives of the intermediate mesoderm. Microarray data were analyzed using R statistical software to determine accurately genes differentially expressed between these populations. Microarray outliers were biologically verified, and the spatial expression pattern of these genes at E10.5 and subsequent stages of early kidney development was determined by RNA in situ hybridization. This approach identified 21 genes preferentially expressed by the E10.5 metanephric mesenchyme, including Ewing sarcoma homolog, 14-3-3 theta, retinoic acid receptor-alpha, stearoyl-CoA desaturase 2, CD24, and cadherin-11, that may be important in formation of renal progenitor cells. Cell surface proteins such as CD24 and cadherin-11 that were strongly and specifically expressed in the uninduced metanephric mesenchyme and mark the renal progenitor population may prove useful in the purification of renal progenitor cells by FACS. These findings may assist in the isolation and characterization of potential renal stem cells for use in cellular therapies for kidney disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have compared the expression pattern of NMDA receptor subunits (NR1 and NR2A-D)and NRI splice variants (NR1-1a/1b,-2a/2b,-3a/3b,4a/4b) in motor neuron populations from adult Wistar rats that are vulnerable (hypoglossal, XII) or resistant (oculomotor, III) to death in amyotrophic lateral sclerosis (ALS). The major finding was higher levels of expression of the NR2B subunit in the hypoglossal nucleus. Quantitative real-time PCR showed that NR1 was expressed at a greater level than any of the NR2 subunits (> 15 fold greater, P

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We identified a transcript named 11M2 on the basis of its strong male-specific expression pattern in the developing mouse gonad. 11M2 was found to be expressed by gonad primordial germ cells (PGCs) of both sexes and down-regulated in female PGCs as they enter prophase I of the first meiotic division, similar to the expression of Oct4. Mouse EST analysis revealed expression only in early-stage embryos, embryonic stem cells and pre-meiotic germ cells. 11M2 corresponds to a recently reported gene variously known as PGC7, stella or Dppa3. We have identified the human orthologue of Dppa3 and find by human EST analysis that it is expressed in human testicular germ cell tumours but not in normal human somatic tissues. The expression patterns of mouse and human DPPA3, in undifferentiated embryonic cells, embryonic germ cells and adult germ cell tumours, together suggest a role for this gene in maintaining cell pluripotentiality.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cells and organisms respond to nutrient deprivation by decreasing global rates of transcription, translation and DNA replication. To what extent such changes can be reversed is largely unknown. We examined the effect of maternal dietary restriction on RNA synthesis in the offspring. Low protein diet fed either throughout gestation or for the preimplantation period alone reduced cellular RNA content across fetal somatic tissues during challenge and increased it beyond controls in fetal and adult tissues after challenge release. Changes in transcription of ribosomal RNA, the major component of cellular RNA, were responsible for this phenotype as evidenced by matching alterations in RNA polymerase I density and DNA methylation at ribosomal DNA loci. Cellular levels of the ribosomal transcription factor Rrn3 mirrored the rRNA expression pattern. In cell culture experiments, Rrn3 overexpression reduced rDNA methylation and increased rRNA expression; the converse occurred after inhibition of Rrn3 activity. These observations define novel mechanism where poor nutrition before implantation irreversibly alters basal rates of rRNA transcription thereafter in a process mediated by rDNA methylation and Rrn3 factor.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Endothelin-3 (Edn3) has been shown to be an essential environmental cue in melanocyte development. Edn3 and its receptor, EdnrB, are allelic to mouse mutations occurring at the lethal spotting and piebald loci, respectively; these mutations result in hypopigmentation phenotypes. Mutations in the genes for both Edn3 and EdnrB are implicated in human pigmentation disorders such as Waardenburg-Shah syndrome, which is characterized by pigmentation defects, deafness, and megacolon. In this study, a tetracycline-inducible transgenic mouse model that overexpresses Edn3 under the control of the Keratin 5 promoter was shown to produce a hyperpigmentation phenotype that decreases over time. The expression pattern of transgenic Edn3 and its effects on the melanocyte population were examined in transgenic embryos, postnatal skin, and the skin of adult mice that exhibit faded hyperpigmentation. These studies suggest that overexpression of Edn3 in this model is restricted primarily to the roof plate of the neural tube and surface ectoderm in the developing embryo and to keratinocytes in the epidermis of postnatal mice. A decline in transgenic expression and a reduction in the dermal melanocytes and free melanin that characterize the phenotype in juvenile mice were shown to correlate with the fading of the hyperpigmentation phenotype. Transgenic mice in which transgenic expression was repressed (resulting in the disappearance of the hyperpigmentation phenotype) also exhibited a decrease in the dermal melanocyte population. The Edn3-overexpressing mice used in this study might be helpful m understanding human skin conditions characterized by dermal melanocytosis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose: Our purpose in this report was to define genes and pathways dysregulated as a consequence of the t(4;14) in myeloma, and to gain insight into the downstream functional effects that may explain the different prognosis of this subgroup.Experimental Design: Fibroblast growth factor receptor 3 (FGFR3) overexpression, the presence of immunoglobulin heavy chain-multiple myeloma SET domain (IgH-MMSET) fusion products and the identification of t(4;14) breakpoints were determined in a series of myeloma cases. Differentially expressed genes were identified between cases with (n = 55) and without (n = 24) a t(4;14) by using global gene expression analysis.Results: Cases with a t(4;14) have a distinct expression pattern compared with other cases of myeloma. A total of 127 genes were identified as being differentially expressed including MMSET and cyclin D2, which have been previously reported as being associated with this translocation. Other important functional classes of genes include cell signaling, apoptosis and related genes, oncogenes, chromatin structure, and DNA repair genes. Interestingly, 25% of myeloma cases lacking evidence of this translocation had up-regulation of the MMSET transcript to the same level as cases with a translocation.Conclusions: t(4;14) cases form a distinct subgroup of myeloma cases with a unique gene signature that may account for their poor prognosis. A number of non-t(4;14) cases also express MMSET consistent with this gene playing a role in myeloma pathogenesis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The correct development of multicellular organisms depends upon the perception of signals secreted by cells in order to co-ordinate cell differentiation. The Physcomitrella patens genome encodes many components of potential signaling systems, including putative receptor proteins and putative secreted protein ligands, yet at present little characterization of these proteins has been carried out. We are currently attempting to characterize the expression pattern and function of a family of 6 secreted proteins exhibiting homology to PrsS, the ligand that controls self-incompatibility (SI) in Papaver rhoeas (field poppy). In poppy, PrsS interacts a receptor on the surface of pollen tubes, PrpS causing SI by programmed cell death. Homologues of this protein (SPH – S-Protein Homologues) exist in dicotyledonous plants and bryophytes but not in other plant taxa. We aim to determine spatiotemporal expression differences between these proteins via reporter gene analysis and qPCR of cDNA. In addition we are in the process of creating targeted gene knockouts for all 6 of the genes in P. patens. We are also searching for receptors of PrpS in Physcomitrella using a bioinformatic strategy alongside phage display. In accomplishing this we hope to determine the function of a small novel secreted protein family in Physcomitrella but in addition we also hope to elucidate the function of SPH proteins in Arabidopsis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background Flatfish metamorphosis denotes the extraordinary transformation of a symmetric pelagic larva into an asymmetric benthic juvenile. Metamorphosis in vertebrates is driven by thyroid hormones (THs), but how they orchestrate the cellular, morphological and functional modifications associated with maturation to juvenile/adult states in flatfish is an enigma. Since THs act via thyroid receptors that are ligand activated transcription factors, we hypothesized that the maturation of tissues during metamorphosis should be preceded by significant modifications in the transcriptome. Targeting the unique metamorphosis of flatfish and taking advantage of the large size of Atlantic halibut (Hippoglossus hippoglossus) larvae, we determined the molecular basis of TH action using RNA sequencing. Results De novo assembly of sequences for larval head, skin and gastrointestinal tract (GI-tract) yielded 90,676, 65,530 and 38,426 contigs, respectively. More than 57 % of the assembled sequences were successfully annotated using a multi-step Blast approach. A unique set of biological processes and candidate genes were identified specifically associated with changes in morphology and function of the head, skin and GI-tract. Transcriptome dynamics during metamorphosis were mapped with SOLiD sequencing of whole larvae and revealed greater than 8,000 differentially expressed (DE) genes significantly (p < 0.05) up- or down-regulated in comparison with the juvenile stage. Candidate transcripts quantified by SOLiD and qPCR analysis were significantly (r = 0.843; p < 0.05) correlated. The majority (98 %) of DE genes during metamorphosis were not TH-responsive. TH-responsive transcripts clustered into 6 groups based on their expression pattern during metamorphosis and the majority of the 145 DE TH-responsive genes were down-regulated. Conclusions A transcriptome resource has been generated for metamorphosing Atlantic halibut and over 8,000 DE transcripts per stage were identified. Unique sets of biological processes and candidate genes were associated with changes in the head, skin and GI-tract during metamorphosis. A small proportion of DE transcripts were TH-responsive, suggesting that they trigger gene networks, signalling cascades and transcription factors, leading to the overt changes in tissue occurring during metamorphosis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hypertension is the major risk factor for coronary disease worldwide. Primary hypertension is idiopathic in origin but is thought to arise from multiple risk factors including genetic, lifestyle and environmental influences. Secondary hypertension has a more definite aetiology; its major single cause is primary aldosteronism (PA), the greatest proportion of which is caused by aldosteroneproducing adenoma (APA), where aldosterone is synthesized at high levels by an adenoma of the adrenal gland. There is strong evidence to show that high aldosterone levels cause adverse effects on cardiovascular, cerebrovascular, renal and other systems. Extensive studies have been conducted to analyse the role that regulation of CYP11B2, the gene encoding the aldosterone synthase enzyme plays in determining aldosterone production and the development of hypertension. One significant regulatory factor that has only recently emerged is microRNA (miRNA). miRNAs are small non-coding RNAs, synthesized by a series of enzymatic processes, that negatively regulate gene expression at the posttranscriptional level. Detection and manipulation of miRNA is now known to be a viable method in the treatment, prevention and prognosis of certain diseases. The aim of the present study was to identify miRNAs likely to have a role in the regulation of corticosteroid biosynthesis. To achieve this, the miRNA profile of APA and normal human adrenal tissue was compared, as was the H295R adrenocortical cell line model of adrenocortical function, under both basal conditions and following stimulation of aldosterone production. Key differentially-expressed miRNAs were then identified and bioinformatic tools used to identify likely mRNA targets and pathways for these miRNAs, several of which were investigated and validated using in vitro methods. The background to this study is set out in Chapter 1 of this thesis, followed by a description of the major technical methods employed in Chapter 2. Chapter 3 presents the first of the study results, analysing differences in miRNA profile between APA and normal human adrenal tissue. Microarray was implemented to detect the expression of miRNAs in these two tissue types and several miRNAs were found to vary significantly and consistently between them. Furthermore, members of several miRNA clusters exhibited similar changes in expression pattern between the two tissues e.g. members of cluster miR-29b-1 (miR-29a-3p and miR-29b-3p) and of cluster miR-29b-2 (miR-29b-3p and miR-29c- 3p) are downregulated in APA, while members of cluster let-7a-1 (let-7a-5p and let-7d-5p), cluster let-7a-3 (let-7a-5p and let-7b-5p) and cluster miR-134 (miR- 134 and miR-382) are upregulated. Further bioinformatic analysis explored the possible biological function of these miRNAs using Ingenuity® Systems Pathway Analysis software. This led to the identification of validated mRNAs already known to be targeted by these miRNAs, as well as the prediction of other mRNAs that are likely targets and which are involved in processes relevant to APA pathology including cholesterol synthesis (HMGCR) and corticosteroidogenesis (CYP11B2). It was therefore hypothesised that increases in miR-125a-5p or miR- 335-5p would reduce HMGCR and CYP11B2 expression. Chapter 4 describes the characterisation of H295R cells of different strains and sources (H295R Strain 1, 2, 3 and HAC 15). Expression of CYP11B2 was assessed following application of 3 different stimulants: Angio II, dbcAMP and KCl. The most responsive strain to stimulation was Strain 1 at lower passage numbers. Furthermore, H295R proliferation increased following Angio II stimulation. In Chapter 5, the hypothesis that increases in miR-125a-5p or miR-335-5p reduces HMGCR and CYP11B2 expression was tested using realtime quantitative RT-PCR and transfection of miRNA mimics and inhibitors into the H295R cell line model of adrenocortical function. In this way, miR-125a-5p and miR-335-5p were shown to downregulate CYP11B2 and HMGCR expression, thereby validating certain of the bioinformatic predictions generated in Chapter 3. The study of miRNA profile in the H295R cell lines was conducted in Chapter 6, analysing how it changes under conditions that increase aldosterone secretion, including stimulation Angiotensin II, potassium chloride or dibutyryl cAMP (as a substitute for adrenocorticotropic hormone). miRNA profiling identified 7 miRNAs that are consistently downregulated by all three stimuli relative to basal cells: miR-106a-5p, miR-154-3p, miR-17-5p, miR-196b-5p, miR-19a-3p, miR-20b- 5p and miR-766-3p. These miRNAs include those derived from cluster miR-106a- 5p/miR-20b-5p and cluster miR-17-5p/miR-19a-3p, each producing a single polycistronic transcript. IPA bioinformatic analysis was again applied to identify experimentally validated and predicted mRNA targets of these miRNAs and the key biological pathways likely to be affected. This predicted several interactions between miRNAs derived from cluster miR-17-5p/miR-19a-3p and important mRNAs involved in cholesterol biosynthesis: LDLR and ABCA1. These predictions were investigated by in vitro experiment. miR-17-5p/miR-106a-p and miR-20b-5p were found to be consistently downregulated by stimulation of aldosterone biosynthesis. Moreover, miR-766-3p was upregulation throughout. Furthermore, I was able to validate the downregulation of LDLR by miR-17 transfection, as predicted by IPA. In summary, this study identified key miRNAs that are differentially-expressed in vivo in cases of APA or in vitro following stimulation of aldosterone biosynthesis. The many possible biological actions these miRNAs could have were filtered by bioinformatic analysis and selected interactions validated in vitro. While direct actions of these miRNAs on steroidogenic enzymes were identified, cholesterol handling also emerged as an important target and may represent a useful point of intervention in future therapies designed to modulate aldosterone biosynthesis and reduce its harmful effects.