985 resultados para enzyme substrate
Resumo:
The amygdala, the dorsal periaqueductal gray (dPAG), and the media] hypothalamus have long been recognized to be a neural system responsible for the generation and elaboration of unconditioned fear in the brain. It is also well known that this neural substrate is under a tonic inhibitory control exerted by GABA mechanisms. However, whereas there is a growing body of evidence to suggest that the amygdala and dPAG are also able to integrate conditioned fear, it is still unclear, however, how the distinct hypothalamic nuclei participate in fear conditioning. In this work we aimed to examine the extent to which the gabaergic mechanisms of this brain region are involved in conditioned fear using the fear-potentiated startle (FPS). Muscimol, a GABA-A receptor agonist, and semicarbazide, an inhibitor of the GABA synthesizing enzyme glutamic acid decarboxylase (GAD), were used as an enhancer and inhibitor of the GABA mechanisms, respectively. Muscimol and semicarbazide were injected into the anterior hypothalamus (AHN). the dorsomedial part of the ventromedial nucleus (VMHDM), the dorsomedial (DMH) or the dorsal premammillary (PMD) nuclei of male Wistar rats before test sessions of the fear conditioning paradigm. The injections into the DMH and PMD did not produce any significant effects on FPS. On the other hand, muscimol injections into the AHN and VMHDM caused significant reduction in FPS. These results indicate that injections of muscimol and semicarbazide into the DMH and PMD fail to change the FPS, whereas the enhancement of the GABA transmission in the AHN and VMHDM produces a reduction of the conditioned fear responses. On the other hand, the inhibition of this transmission led to an increase of this conditioned response in the AHN. Thus, whereas DMH and PMD are known to be part of the caudal-most region of the medial hypothalamic defensive system, which integrates unconditioned fear, systems mediating conditioned fear select the AHN and VMHDM nuclei that belong to the rostral-most portion of the hypothalamic defense area. Thus, distinct subsets of neurons in the hypothalamus could mediate different aspects of the defensive responses. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Human hypoxanthine-guanine phosphoribosyltransferase (HGPRT) catalyses the synthesis of the purine nucleoside monophosphates, IMP and GMP, by the addition of a 6-oxopurine base, either hypoxanthine or guanine, to the 1-beta-position of 5-phospho-U-D-ribosyl-1-pyrophosphate (PRib-PP). The mechanism is sequential, with PRib-PP binding to the free enzyme prior to the base. After the covalent reaction, pyrophosphate is released followed by the nucleoside monophosphate. A number of snapshots of the structure of this enzyme along the reaction pathway have been captured. These include the structure in the presence of the inactive purine base analogue, 7-hydroxy [4,3-d] pyrazolo pyrimidine (HPP) and PRib-PP. Mg2+, and in complex with IMP or GMP. The third structure is that of the immucillinHP.Mg2+.PPi complex, a transition-state analogue. Here, the first crystal structure of free human HGPRT is reported to 1.9 angstrom resolution, showing that significant conformational changes have to occur for the substrate(s) to bind and for catalysis to proceed. Included in these changes are relative movement of subunits within the tetramer, rotation and extension of an active-site alpha-helix (D137-D153), reorientation of key active-site residues K68, D137 and K165, and the rearrangement of three active-site loops (100-128, 165-173 and 186-196). Toxoplasina gondii HGXPRT is the only other 6-oxopurine phosphoribosyltransferase structure solved in the absence of ligands. Comparison of this structure with human HGPRT reveals significant differences in the two active sites, including the structure of the flexible loop containing K68 (human) or K79 (T gondii). (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The genetic mechanisms responsible for the formation of adrenocortical adenomas which autonomously produce aldosterone are largely unknown, The adrenal renin-angiotensin system has been implicated in the pathophysiology of these tumours, Angiotensin-converting enzyme (ACE) catalyses the generation of angiotensin II, and the insertion/deletion (I/D) polymorphism of the ACE gene regulates up to 50% of plasma and cellular ACE variability in humans. We therefore examined the genotypic and allelic frequency distributions of the ACE gene I/D polymorphism in 55 patients with aldosterone-producing adenoma, APA, (angiotensin-unresponsive APA n = 28, angiotensin-responsive APA n = 27), and 80 control subjects with no family history of hypertension, We also compared the ACE gene I/D polymorphism allelic pattern in matched tumour and peripheral blood DNA in the 55 patients with APA, The frequency of the D allele was 0.518 and 0.512 and the I allele was 0.482 and 0.488 in the APA and control subjects respectively, Genotypic and allelic frequency analysis found no significant differences between the groups, Examination of the matched tumour and peripheral blood DNA samples revealed the loss of the insertion allele in four of the 25 patients who were heterozygous for the ACE I/D genotype. The I/D polymorphism of the ACE gene does not appear to contribute to the biochemical and phenotypic characteristics of APA, however, the deletion of the insertion allele of the ACE gene I/D polymorphism in 16% of aldosterone-producing adenomas may represent the loss of a tumour suppressor gene/s or other genes on chromosome 17q which may contribute to tumorigenesis in APA.
Resumo:
Fructan:fructan fructosyltransferase (FFT) activity was purified about 300-fold from leaves of Lolium rigidura Gaudin by a combination of affinity chromatography, gel filtration, anion exchange and isoelectric focusing. The FFT activity was free of sucrose:sucrose fructosyltransferase and invertase activities. It had an apparent pI of 4.7 as determined by isoelectric focusing, and a molecular mass of about 50000 (gel filtration). The FFT activity utilized the trisaccharides 1-kestose and 6(G)-kestose as sole substrates, but was not able to use 6-kestose as sole substrate. The FFT activity was not saturated when assayed at concentrations of 1-kestose, 6(G)-kestose or (1,1)-kestotetraose of up to 400 mM The rate of reaction of the FFT activity was most rapid when assayed with 1-kestose and was less rapid when assayed with 6(G)-kestose, (1,1)-kestotetraose or (1,1,1)-kestopentaose. The FFT activity when assayed at a relatively high concentration of enzyme activity (approximately equivalent to about half the activity in crude extracts per gram fresh mass) did not synthesize fructan of degree of polymerization > 6, even during extended assays of up to 10 h. When assayed with a combination of 1-kestose and uniformly labelled [C-14]sucrose as substrates, the major reaction was the transfer of a fructosyl residue from 1-kestose to sucrose resulting in the re-synthesis of 1-kestose. Tetrasaccharide and 6(G)-kestose were also synthesized. When assayed with 6(G)-kestose and [C-14]sucrose as substrates, the major reaction of the FFT activity was the synthesis of tetrasaccharide. However, some synthesis of 1-kestose and re-synthesis of 6(G)-kestose also occurred. When 6, kestose was the sole substrate for the FFT activity, synthesis of tetrasaccharide was 2.7 to 3.4-fold slower than when 1-kestose was used as the sole substrate. Owing to differences in the fructan:sucrose fructosyltransferase activity of the FFT with each of the trisaccharides, net synthesis of tetrasaccharide by the FFT was altered significantly in the presence of sucrose. The magnitude of this effect depended on the concentration of the trisaccharides. In the presence of sucrose, 6(G)-kestose could be a substrate of equivalent importance to 1-kestose for synthesis of tetrasaccharide.
Resumo:
Xanthine phosphoribosyltransferase (XPRT; EC 2.4.2.22) from Escherichia coil is a tetrameric enzyme having 152 residues per subunit. XPRT catalyzes the transfer of the phosphoribosyl group from 5-phospho-alpha-D-ribosyl l-pyrophosphate (PRib-PP) to the 6-oxopurine bases guanine, xanthine, and hypoxanthine to form GMP, XMP, and IMP, respectively. Crystals grown in the absence of substrate or product were used to determine the structure of XPRT at a resolution of 1.8 Angstrom by multiple isomorphous replacement. The core structure of XPRT includes a five-stranded parallel B-sheet surrounded by three or-helices, which is similar to that observed in other known phosphoribosyltransferase (PRTase) structures. The XPRT structure also has several interesting features. A glutamine residue in the purine binding site may be responsible for the altered 6-oxopurine base specificity seen in this enzyme compared to other 6-oxopurine PRTases. Also, we observe both a magnesium ion and a sulfate ion bound at the PRib-PP binding site of XPRT. The sulfate ion interacts with Arg-37 which has a cis-peptide conformation, and the magnesium ion interacts with Asp-89, a highly conserved acidic residue in the PRib-PP binding site motif. The XPRT structure also incorporates a feature which has not been observed in other PRTase structures. The C-terminal 12 residues of XPRT adopt an unusual extended conformation and make interactions with a neighboring subunit. The very last residue, Arg-152, could form part of the active site of a symmetry-related subunit in the XPRT tetramer.
Resumo:
beta-Galactosidase (beta-Gal) activity is a widely accepted biomarker to detect senescence both in situ and in vitro. A cytochemical assay based on production of a blue-dyed precipitate that results from the cleavage of the chromogenic substrate X-Gal is commonly used. Blue and nonblue cells are counted under the microscope and a semiquantitative percentage of senescent cells can be obtained. Here, we present a quantitative, fast, and easy to use chemiluminescent assay to detect senescence. The Galacton chemiluminescent method used to detect the prokaryotic beta-Gal reporter enzyme in transfection studies was adapted to assay mammalian beta-Gal. The assay showed linear production of luminescence in a time- and cell-number-dependent manner. The chemiluminescent assay showed significant correlation with the cytochemical assay in detecting replicative senescence (Pearson r = 0.8486, p < 0.005). Moreover, the chemiluminescent method (Galacton) also detected stress-induced senescence in cells treated with H2O2 similar to the cytochemical assay (X-Gal) (Galacton: control 25.207.3 +/- 6548.6. H2O, 52,487.4 +/- 16,284.9, p < 0.05; X-Gal: control 41.31 +/- 7.0%, H2O2 92.97 +/- 2.8%, p < 0.01). Thus, our method is well suited to the detection of replicative and stress-induced senescence in cell culture. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Aerobic exercise training leads to a physiological, nonpathological left ventricular hypertrophy; however, the underlying biochemical and molecular mechanisms of physiological left ventricular hypertrophy are unknown. The role of microRNAs regulating the classic and the novel cardiac renin-angiotensin (Ang) system was studied in trained rats assigned to 3 groups: (1) sedentary; (2) swimming trained with protocol 1 (T1, moderate-volume training); and (3) protocol 2 (T2, high-volume training). Cardiac Ang I levels, Ang-converting enzyme (ACE) activity, and protein expression, as well as Ang II levels, were lower in T1 and T2; however, Ang II type 1 receptor mRNA levels (69% in T1 and 99% in T2) and protein expression (240% in T1 and 300% in T2) increased after training. Ang II type 2 receptor mRNA levels (220%) and protein expression (332%) were shown to be increased in T2. In addition, T1 and T2 were shown to increase ACE2 activity and protein expression and Ang (1-7) levels in the heart. Exercise increased microRNA-27a and 27b, targeting ACE and decreasing microRNA-143 targeting ACE2 in the heart. Left ventricular hypertrophy induced by aerobic training involves microRNA regulation and an increase in cardiac Ang II type 1 receptor without the participation of Ang II. Parallel to this, an increase in ACE2, Ang (1-7), and Ang II type 2 receptor in the heart by exercise suggests that this nonclassic cardiac renin-angiotensin system counteracts the classic cardiac renin-angiotensin system. These findings are consistent with a model in which exercise may induce left ventricular hypertrophy, at least in part, altering the expression of specific microRNAs targeting renin-angiotensin system genes. Together these effects might provide the additional aerobic capacity required by the exercised heart. (Hypertension. 2011;58:182-189.).
Resumo:
Sucrose:sucrose fructosyltransferase (SST) activity was partially purified from whole shoots of Lolium rigidum by a combination of affinity chromatography, gel filtration and anion-exchange chromatography. The SST activity co-eluted with some fructan:fructan fructosyltransferase (FFT) and invertase activities and consequently the partially purified preparation was termed the fructosyltransferase (FT) preparation. The SST-like activity in the FT preparation was purified 214-fold and had an apparent molecular mass of 84 000. The FT preparation contained several peptides with an apparent pI of 4.6-4.7. When assayed with sucrose concentrations up to 600 mM, the FT preparation synthesized 1-kestose at all concentrations, and synthesized 6-kestose at concentrations of 150 mM and greater. The K-m of 1-kestose production was 0.2 M. When the FT preparation was assayed at a concentration of activity approximately half that measured in fresh tissue with 100 mM sucrose, 1-kestose, or 6(G)-kestose as substrates, fructans of degree of polymerization (DP) less than or equal to 5 were synthesized. A partially purified FFT activity, free of SST and invertase activities, which synthesized beta-2,1-glycosidic linked oligofructans of DP less than or equal to 6, was combined in vitro with the FT preparation (FFT-FT preparation) to give a ratio of SST:FFT activities similar to that measured in crude enzyme extracts from L. rigidum. The FFT-FT preparation synthesized oligofructans when assayed with 100 mM concentrations of sucrose, 1-kestose or 6(G)-kestose, but was not able to synthesize fructans of DP greater than or equal to 6 even after extended assays of up to 10 h. The FFT-FT preparation was also assayed with 100 mM sucrose with small amounts of concentrated sucrose added periodically during the assay to maintain the substrate concentration. In this assay, the FFT-FT preparation synthesized fructans up to an apparent DP of 17 or greater. The fructans of DP greater than or equal to 6 synthesized in the assay appeared to form two molecular series containing both beta-2,1- and beta-2,6-glycosidic linked fructosyl residues with terminal or internal glucosyl residues. The apparent rate of SST activity in the assay of the FFT-FT preparation was greater than that measured in a similar assay of the FT preparation alone which did not result in fructans with DP greater than or equal to 6. It was concluded that the FFT-FT preparation, when assayed with a continual supply of sucrose, contained a factor which promoted synthesis of fructans of DP greater than or equal to 6 and synthesis of beta-2,B-glycosidic linkages between fructosyl residues.
Resumo:
SUBPOPULATIONS of olfactory receptor neurons, which are dispersed throughout the olfactory neuroepithelium, express specific cell surface carbohydrates and project to discrete regions of the olfactory bulb. Cell surface carbohydrates such as N-acetyl-lactosamine have been postulated to mediate sorting and selective fasciculation of discrete axon subpopulations during development of the olfactory pathway. Substrate-bound N-acetyl-lactosamine promotes neurite outgrowth by both clonal olfactory receptor neuron cell lines and olfactory receptor neurons in vitro, indicating that cell surface carbohydrates may be ligands for receptor-mediated stimulation of axon growth in vivo. In the present study, the role of transmembrane signaling in N-acetyl-lactosamine-stimulated neurite outgrowth was examined in the clonal olfactory neuron cell line 4.4.2. Substrate-bound N-acetyl-lactosamine stimulated neurite outgrowth which was specifically inhibited by antagonists to N- and L-type calcium channels and to tyrosine kinase phosphorylation. These results indicate that N-acetyl-lactosamine can evoke transmembrane receptor-mediated responses capable of influencing neurite outgrowth.
Resumo:
Many eukaryotic proteins are posttranslationally modified by the esterification of cysteine thiols to long-chain fatty acids. This modification, protein palmitoylation, is catalyzed by a large family of palmitoyl acyltransferases that share an Asp-His-His-Cys Cys-rich domain but differ in their subcellular localizations and substrate specificities. In Trypanosoma brucei, the flagellated protozoan parasite that causes African sleeping sickness, protein palmitoylation has been observed for a few proteins, but the extent and consequences of this modification are largely unknown. We undertook the present study to investigate T. brucei protein palmitoylation at both the enzyme and substrate levels. Treatment of parasites with an inhibitor of total protein palmitoylation caused potent growth inhibition, yet there was no effect on growth by the separate, selective inhibition of each of the 12 individual T. brucei palmitoyl acyltransferases. This suggested either that T. brucei evolved functional redundancy for the palmitoylation of essential palmitoyl proteins or that palmitoylation of some proteins is catalyzed by a noncanonical transferase. To identify the palmitoylated proteins in T. brucei, we performed acyl biotin exchange chemistry on parasite lysates, followed by streptavidin chromatography, two-dimensional liquid chromatography-tandem mass spectrometry protein identification, and QSpec statistical analysis. A total of 124 palmitoylated proteins were identified, with an estimated false discovery rate of 1.0%. This palmitoyl proteome includes all of the known palmitoyl proteins in procyclic-stage T. brucei as well as several proteins whose homologues are palmitoylated in other organisms. Their sequences demonstrate the variety of substrate motifs that support palmitoylation, and their identities illustrate the range of cellular processes affected by palmitoylation in these important pathogens.
Resumo:
Well-differentiated liposarcoma (WDLS) is one of the most common malignant mesenchymal tumors and dedifferentiated liposarcoma (DDLS) is a malignant tumor consisting of both WDLS and a transformed nonlipogenic sarcomatous component. Cytogenetically, WDLS is characterized by the presence of ring or giant rod chromosomes containing several amplified genes, including MDM2, TSPAN31 CDK4, and others mainly derived from chromosome bands 12q13-15. However, the 12q13-15 amplicon is large and discontinuous. The focus of this study was to identify novel critical genes that are consistently amplified in primary (nonrecurrent) WDLS and with potential relevance for future targeted therapy. Using a high-resolution (5.0 kb) ""single nucleotide polymorphism""/copy number variation microarray to screen the whole genome in a series of primary WDLS, two consistently amplified areas were found on chromosome 12: one region containing the MDM2 and CPM genes, and another region containing the FRS2 gene. Based on these findings, we further validated FRS2 amplification in both WDLS and DDLS. Fluorescence in situ hybridization confirmed FRS2 amplification in all WDLS and DDLS tested (n = 57). Real time PCR showed FRS2 mRNA transcriptional upregulation in WDLS (n = 19) and DDLS (n = 13) but not in lipoma (n = 5) and normal fat (n = 9). Immunoblotting revealed high expression levels of phospho-FRS2 at 1436 and slightly overexpression of total FRS2 protein in liposarcoma but not in normal fat or preadipocytes. Considering the critical role of FRS2 in mediating fibroblast growth factor receptor signaling, our findings indicate that FRS2 signaling should be further investigated as a potential therapeutic target for liposarcoma. (C) 2011 Wiley-Liss, Inc.
Resumo:
Background. Prior to the introduction of enzyme replacement therapy (ERT), management of Fabry disease (FD) consisted of symptomatic and palliative measures. ERT has been available for several years using recombinant human agalsidase alfa, an analogue of alpha-galactosidase A (GALA). However, the limitations of ERT in improving kidney function have not been established. This study evaluates the safety and therapeutic effect of agalsidase alfa replacement in terms of kidney function and reduction in 24-hour proteinuria. Methods. During the period between January 1, 2002, and August 1, 2005, nine Fabry patients (7 male, 2 female) were treated according to protocol, receiving 0.2 mg/kg agalsidase alfa IV every two weeks. Kidney function was evaluated by measuring the glomerular filtration rate (GFR) using chromium ethylene diamine tetra-acetate clearance ((51)Cr-EDTA mL/min/1.73 m(2)) at baseline, 12, 24, and 36 months. 24-hour proteinuria was measured at baseline, 3, 6, 12, 18, 24, and 36 months of ERT. Kidney disease was classified according to National Kidney Foundation Disease Outcome Quality Initiative (NKF/DOQI) Advisory Board criteria, which define stage I chronic kidney disease (CKD) as GFR >= 90mL/min/1.73 m(2), stage II as 60-89 mL/min/1.73m(2), stage III as 30-59 mL/min/1.73 m(2), stage IV as 15-29 mL/min/1.73m(2), and stage V as < 15 mL/min/1.73m(2). Results. Six patients completed 36 months of therapy, 2 patients completed 18 months, and 1 patient completed 12 months. Mean patient age at baseline was 34.6 +/- 11.3 years. During the study period, kidney function remained stable in patients with stages I, II, or III CKD. One patient, who entered the study with stage IV CKD, progressed to end-stage chronic kidney disease, beginning hemodialysis after 7 months and receiving a kidney transplant after 12 months of ERT. Proteinuria also remained stable in the group of patients with pathologic proteinuria. The use of agalsidase alfa was well tolerated in 99.5% of the infusions administered. Conclusion. Over the course of 36 months of ERT, there was no change in kidney function and 24-hour proteinuria. This suggests thatagalsidase alfa may slow or halt the progression of kidney disease when used before extensive kidney damage occurs. No significant side effects were observed with ERT during the course of the study.
Resumo:
Angiotensin (Ang) I-converting enzyme (ACE) is involved in the control of blood pressure by catalyzing the conversion of Ang I into the vasoconstrictor Ang II and degrading the vasodilator peptide bradykinin. Human ACE also functions as a signal transduction molecule, and the binding of ACE substrates or its inhibitors initiates a series of events. In this study, we examined whether Ang II could bind to ACE generating calcium signaling. Chinese hamster ovary cells transfected with an ACE expression vector reveal that Ang II is able to bind with high affinity to ACE in the absence of the Ang II type 1 and type 2 receptors and to activate intracellular signaling pathways, such as inositol 1,4,5-trisphosphate and calcium. These effects could be blocked by the ACE inhibitor, lisinopril. Calcium mobilization was specific for Ang II, because other ACE substrates or products, namely Ang 1-7, bradykinin, bradykinin 1-5, and N-acetyl-seryl-aspartyl-lysyl-proline, did not trigger this signaling pathway. Moreover, in Tm5, a mouse melanoma cell line endogenously expressing ACE but not Ang II type 1 or type 2 receptors, Ang II increased intracellular calcium and reactive oxygen species. In conclusion, we describe for the first time that Ang II can interact with ACE and evoke calcium and other signaling molecules in cells expressing only ACE. These findings uncover a new mechanism of Ang II action and have implications for the understanding of the renin-Ang system. (Hypertension. 2011;57:965-972.) . Online Data Supplement