978 resultados para electrosynthesis hydrotalcite pH-sensor structured catalystcatalytic partial oxidation
Resumo:
This study aimed to verify the influence of partial dehydration of "Niagara Rosada" grape clusters in physicochemical quality of the pre- fermentation must. In Brazil, during the winemaking process it is common to need to adjust the grape must when the physicochemical characteristics of the raw material are insufficient to produce wines in accordance with the Brazilian legislation for classification of beverages, which establishes the minimum alcohol content of 8.6 % for the beverage to be considered wine. Therefore, given that the reduction in the water content of grape berries allows the concentration of chemical compounds present in its composition, especially the concentration of total soluble solids, we proceeded with the treatments that were formed by the combination of two temperatures (T1-37.1ºC and T2-22.9 ºC) two air speeds (S1: 1.79 m s-1 and S2: 3.21 m s-1) and a control (T0) that has not gone through the dehydration treatment. Analysis of pH, Total Titratable Acidity (TTA) were performed in mEq L-1, Total Soluble Solids (TSS) in ºBrix, water content on a dry basis and Concentration of Phenolic Compounds (CPC) in mg of gallic acid per 100g of must. The average comparison test identified statistically significant modifications for the adaptation of must for winemaking purposes, having the treatment with 22.9 ºC and air speed of 1.79 m s-1 shown the largest increase in the concentration of total soluble solids, followed by the second best result for concentration of phenolic compounds.
Resumo:
Oxidized starch is a key component in the paper industry, where it is used as both surfacing sizer and filler. Large quantities are annually used for this purpose; however, the methods for the oxidation are not environmentally friendly. In our research, we have studied the possibility to replace the harmful oxidation agents, such as hypochlorite or iodates and transition metal catalysts, with a more environmentally friendly oxidant, hydrogen peroxide (H2O2), and a special metal complex catalyst (FePcS), of which only a small amount is needed. The work comprised batch and semi-batch studies by H2O2, ultrasound studies of starch particles, determination of low-molecular by-products and determination of the decomposition kinetics of H2O2 in the presence of starch and the catalyst. This resulted in a waste-free oxidation method, which only produces water and oxygen as side products. The starch oxidation was studied in both semi-batch and batch modes in respective to the oxidant (H2O2) addition. The semi-batch mode proved to yield a sufficient degree of substitution (COOH groups) for industrial purposes. Treatment of starch granules by ultrasound was found to improve the reactivity of starch. The kinetic results were found out to have a rather complex pattern – several oxidation phases were observed, apparently due to the fact that the oxidation reaction in the beginning only took place on the surface, whereas after a prolonged reaction time, partial degradation of the solid starch granules allowed further reaction in the interior parts. Batch-mode experiments enabled a more detailed study of the mechanisms of starch in the presence of H2O2 and the catalyst, but yielded less oxidized starch due to rapid decomposition of H2O2 due to its high concentrations. The effect of the solid-liquid (S/L) ratio in the reaction system was studied in batch experiments. These studies revealed that the presence of the catalyst and the starch enhance the H2O2 decomposition.
Resumo:
Interest in water treatment by electrochemical methods has grown in recent years. Electrochemical oxidation has been applied particularly successfully to degrade different organic pollutants and disinfect drinking water. This study summarizes the effectiveness of the electrochemical oxidation technique in inactivating different primary biofilm forming paper mill bacteria as well as sulphide and organic material in pulp and paper mill wastewater in laboratory scale batch experiments. Three different electrodes, borondoped diamond (BDD), mixed metal oxide (MMO) and PbO2, were employed as anodes. The impact on inactivation efficiency of parameters such as current density and initial pH or chloride concentration of synthetic paper machine water was studied. The electrochemical behaviour of the electrodes was investigated by cyclic voltammetry with MMO, BDD and PbO2 electrodes in synthetic paper mill water as also with MMO and stainless steel electrodes with biocides. Some suggestions on the formation of different oxidants and oxidation mechanisms were also presented during the treatment. Aerobic paper mill bacteria species (Deinococcus geothermalis, Pseudoxanthomonas taiwanensis and Meiothermus silvanus) were inactivated effectively (>2 log) at MMO electrodes by current density of 50 mA/cm2 and the time taken three minutes. Increasing current density and initial chloride concentration of paper mill water increased the inactivation rate of Deinococcus geothermalis. The inactivation order of different bacteria species was Meiothermus silvanus > Pseudoxanthomonas taiwanensis > Deinococcus geothermalis. It was observed that inactivation was mainly due to the electrochemically generated chlorine/hypochlorite from chloride present in the water and also residual disinfection by chlorine/hypochlorite occurred. In real paper mill effluent treatment sulphide oxidation was effective with all the different initial concentrations (almost 100% reduction, current density 42.9 mA/cm2) and also anaerobic bacteria inactivation was observed (almost 90% reduction by chloride concentration of 164 mg/L and current density of 42.9 mA/cm2 in five minutes). Organic material removal was not as effective when comparing with other tested techniques, probably due to the relatively low treatment times. Cyclic voltammograms in synthetic paper mill water with stainless steel electrode showed that H2O2 could be degraded to radicals during the cathodic runs. This emphasises strong potential of combined electrochemical treatment with this biocide in bacteria inactivation in paper mill environments.
Resumo:
Advanced oxidation processes (AOPs) have been studied and developed to suffice the effective removal of refractory and toxic compounds in polluted water. The quality and cost of wastewater treatment need improvements, and electric discharge technology has a potential to make a significant difference compared to other established AOPs based on energy efficiency. The generation of active oxidant species such as ozone and hydroxyl radicals by high voltage discharge is a relatively new technology for water treatment. Gas-phase pulsed corona discharge (PCD), where a treated aqueous solution is dispersed between corona-producing electrodes free of the dielectric barriers, was developed as an alternative approach to the problem. The short living radicals and ozone formed in the gas phase and at the gas-liquid interface react with dissolved impurities. PCD equipment has a relatively simple configuration, and with the reactor in an enclosed compartment, it is insensitive towards gas humidity and does not need the gas transport. In this thesis, PCD was used to study and evaluate the energy efficiency for degrading various organic compounds, as well as the chemistry of the oxidation products formed. The experiments investigate the aqueous oxidation of phenol, humic substances, pharmaceutical compounds (paracetamol, ibuprofen, indomethacin, salicylic acids, -estradiol), as well as lignin degradation and transformation to aldehydes. The study aims to establish the influence of initial concentration of the target pollutant, the pulsed discharge parameters, gas phase composition and the pH on the oxidation kinetics and the efficiency. Analytical methods to measure the concentrations of the target compounds and their by-products include HPLC, spectrophotometry, TOC and capillary electrophoresis. The results of the research included in this summary are presented in the attached publications and manuscripts accepted for publication. Pulsed corona discharge proved to be highly effective in oxidizing each of the target compounds, surpassing the closest competitor, conventional ozonation. The increase in oxidation efficiencies for some compounds in oxygen media and at lower pulse repetition frequencies shows a significant role of ozone. The role of the ·OH radicals was established in the surface reactions. The main oxidation products, formation of nitrates, and the lignin transformation were quantified. A compound specific approach is suggested for optimization of the PCD parameters that have the most significant impact on the oxidation energy efficiency because of the different characteristics and responses of the target compound to the oxidants, as well as different admixtures that are present in the wastewater. Further studies in the method’s safety (nitration and nitrosation of organic compounds, nitrite and nitrate formation enhancement) are needed for promoting the method.
Resumo:
Polymeric materials that conduct electricity are highly interesting for fundamental studies and beneficial for modern applications in e.g. solar cells, organic field effect transistors (OFETs) as well as in chemical and bio‐sensing. Therefore, it is important to characterize this class of materials with a wide variety of methods. This work summarizes the use of electrochemistry also in combination with spectroscopic methods in synthesis and characterization of electrically conducting polymers and other π‐conjugated systems. The materials studied in this work are intended for organic electronic devices and chemical sensors. Additionally, an important part of the presented work, concerns rational approaches to the development of water‐based inks containing conducting particles. Electrochemical synthesis and electroactivity of conducting polymers can be greatly enhanced in room temperature ionic liquids (RTILs) in comparison to conventional electrolytes. Therefore, poly(para‐phyenylene) (PPP) was electrochemically synthesized in the two representative RTILs: bmimPF6 and bmiTf2N (imidazolium and pyrrolidinium‐based salts, respectively). It was found that the electrochemical synthesis of PPP was significantly enhanced in bmimPF6. Additionally, the results from doping studies of PPP films indicate improved electroactivity in bmimPF6 during oxidation (p‐doping) and in bmiTf2N in the case of reduction (n‐doping). These findings were supported by in situ infrared spectroscopy studies. Conducting poly(benzimidazobenzophenanthroline) (BBL) is a material which can provide relatively high field‐effect mobility of charge carriers in OFET devices. The main disadvantage of this n‐type semiconductor is its limited processability. Therefore in this work BBL was functionalized with poly(ethylene oxide) PEO, varying the length of side chains enabling water dispersions of the studied polymer. It was found that functionalization did not distract the electrochemical activity of the BBL backbone while the processability was improved significantly in comparison to conventional BBL. Another objective was to study highly processable poly(3,4‐ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) water‐based inks for controlled patterning scaled‐down to nearly a nanodomain with the intention to fabricate various chemical sensors. Developed PEDOT:PSS inks greatly improved printing of nanoarrays and with further modification with quaternary ammonium cations enabled fabrication of PEDOT:PSS‐based chemical sensors for lead (II) ions with enhanced adhesion and stability in aqueous environments. This opens new possibilities for development of PEDOT:PSS films that can be used in bio‐related applications. Polycyclic aromatic hydrocarbons (PAHs) are a broad group of π‐conjugated materials consisting of aromatic rings in the range from naphthalene to even hundred rings in one molecule. The research on this type of materials is intriguing, due to their interesting optical properties and resemblance of graphene. The objective was to use electrochemical synthesis to yield relatively large PAHs and fabricate electroactive films that could be used as template material in chemical sensors. Spectroscopic, electrochemical and electrical investigations evidence formation of highly stable films with fast redox response, consisting of molecules with 40 to 60 carbon atoms. Additionally, this approach in synthesis, starting from relatively small PAH molecules was successfully used in chemical sensor for lead (II).
Resumo:
Tämän kandidaatintyön tarkoituksena oli tutkia märkähapetusprosessia jätevesien käsittely-menetelmänä ja mahdollisena menetelmänä kemikaalien tuottamiseksi jätevesistä. Erityishuomio on kiinnitetty paperiteollisuudessa syntyviin jätevesiin. Teoriaosassa käsitellään vesikiertoja paperitehtaassa, paperitehtaalla syntyvän jäteveden ominaisuuksia sekä itse märkähapetusprosessia. Märkähapetusprosessissa perehdytään tavalliseen happea käyttävään märkähapetukseen sekä vetyperoksidia käyttävään menetelmään sekä näissä prosesseissa syntyviin väli- ja lopputuotteisiin. Märkähapetus (WO) on terminen hapetusmenetelmä, jolla voidaan käsitellä jätevesiä, jotka ovat liian konsentroituja biologisiin käsittelyihin tai jotka ovat huonosti biohajoavia. Märkähapetuksen tarkoituksena on parantaa molekulaarisen hapen ja orgaanisen aineen välistä kontaktia, jolloin orgaaninen aines pilkkoutuu muodostaen pääasiassa karboksyylihappoja, aldehydejä, hiilidioksidia ja vettä. Märkähapetuksessa hapettavana kaasuna voidaan käyttää joko puhdasta happea tai ilmaa. Vetyperoksidia käyttävässä märkähapetuksessa (WPO) hapettava kaasu on korvattu nestemäisellä vetyperoksidilla. Kokeellisessa osassa tutkittiin orgaanisen aineksen hapetusta käyttäen Fentonin reagenssia, jolloin katalyyttina reaktiossa toimii rautaionit (Fe2+ ja Fe3+) ja hapettimena vetyperoksidi. Hapetettavana jätevetenä käytettiin paperitehtaan hiomolta saatua kiertovettä, TMP-vettä. Hapetuskokeita tehtiin eri vetyperoksidin annoksilla ja katalyytin määrillä eri lämpötiloissa. Hapetuksen jälkeen näytteistä mitattiin kemiallinen hapenkulutus (COD), orgaanisen hiilen kokonaismäärä (TOC) sekä pH. Lisäksi näytteistä määritettiin nestekromatografilla (HPLC) tyypillisten välituotteiden, kuten oksaalihapon, muurahaishapon ja etikkahapon, määrät. Tehdyissä kokeissa COD-arvoja saatiin pienennettyä 50-88 % siten, että suodatetuissa näytteissä muutos oli suurempi kuin suodattamattomissa näytteissä. Lisäksi TOC-arvot laskivat 28-58 %. Tehdyissä kokeissa saatiin myös tuotettua välituotteina karboksyylihappoja, joista etikkahappoa ja oksaalihappoa tuotettiin suurimmat määrät. Myös muurahaishappoa ja meripihkahappoa saatiin tuotettua.
Resumo:
The aminopeptidase activity of Phaseolus vulgaris seeds was measured using L-Leu-p-nitroanilide and the L-aminoacyl-ß-naphthylamides of Leu, Ala, Arg and Met. A single peak of aminopeptidase activity on Leu-ß-naphthylamide was eluted at 750 µS after gradient elution chromatography on DEAE-cellulose of the supernatant of a crude seed extract. The effluent containing enzyme activity was applied to a Superdex 200 column and only one peak of aminopeptidase activity was obtained. SDS-polyacrylamide gel electrophoresis (10%) presented only one protein band with molecular mass of 31 kDa under reducing and nonreducing conditions. The aminopeptidase has an optimum pH of 7.0 for activity on all substrates tested and the highest Vmax/KM ratio for L-Leu-ß-naphthylamide. The enzyme activity was increased 40% by 0.15 M NaCl, inhibited 94% by 2.0 mM Zn2+, inhibited 91% by sodium p-hydroxymercuribenzoate and inhibited 45% by 0.7 mM o-phenanthroline and 30 µM EDTA. Mercaptoethanol (3.3 mM), dithioerythritol (1.7 mM), Ala, Arg, Leu and Met (70 µM), p-nitroaniline (0.25 mM) and ß-naphthylamine (0.53 mM) had no effect on enzyme activity when assayed with 0.56 mM of substrate. Bestatin (20 µM) inhibited 18% the enzyme activity. The aminopeptidase activity in the seeds decayed 50% after two months when stored at 4oC and room temperature. The enzyme is leucyl aminopeptidase metal- and thiol group-dependent.
Resumo:
It has been suggested that glucocorticoids released during stress might impair neuronal function by decreasing glucose uptake by hippocampal neurons. Previous work has demonstrated that glucose uptake is reduced in hippocampal and cerebral cortex slices 24 h after exposure to acute stress, while no effect was observed after repeated stress. Here, we report the effect of acute and repeated restraint stress on glucose oxidation to CO2 in hippocampal and cerebral cortex slices and on plasma glucose and corticosterone levels. Male adult Wistar rats were exposed to restraint 1 h/day for 50 days in the chronic model. In the acute model there was a single exposure. Immediately or 24 h after stress, the animals were sacrificed and the hippocampus and cerebral cortex were dissected, sliced, and incubated with Krebs buffer, pH 7.4, containing 5 mM glucose and 0.2 µCi D-[U-14C] glucose. CO2 production from glucose was estimated. Trunk blood was also collected, and both corticosterone and glucose were measured. The results showed that corticosterone levels after exposure to acute restraint were increased, but the increase was smaller when the animals were submitted to repeated stress. Blood glucose levels increased after both acute and repeated stress. However, glucose utilization, measured as CO2 production in hippocampal and cerebral cortex slices, was the same in stressed and control groups under conditions of both acute and chronic stress. We conclude that, although stress may induce a decrease in glucose uptake, this effect is not sufficient to affect the energy metabolism of these cells.
Resumo:
The brown algae Padina gymnospora contain different fucans. Powdered algae were submitted to proteolysis with the proteolytic enzyme maxataze. The first extract of the algae was constituted of polysaccharides contaminated with lipids, phenols, etc. Fractionation of the fucans with increasing concentrations of acetone produced fractions with different proportions of fucose, xylose, uronic acid, galactose, and sulfate. One of the fractions, precipitated with 50% acetone (v/v), contained an 18-kDa heterofucan (PF1), which was further purified by gel-permeation chromatography on Sephadex G-75 using 0.2 M acetic acid as eluent and characterized by agarose gel electrophoresis in 0.05 M 1,3 diaminopropane/acetate buffer at pH 9.0, methylation and nuclear magnetic resonance spectroscopy. Structural analysis indicates that this fucan has a central core consisting mainly of 3-ß-D-glucuronic acid 1-> or 4-ß-D-glucuronic acid 1 ->, substituted at C-2 with alpha-L-fucose or ß-D-xylose. Sulfate groups were only detected at C-3 of 4-alpha-L-fucose 1-> units. The anticoagulant activity of the PF1 (only 2.5-fold lesser than low molecular weight heparin) estimated by activated partial thromboplastin time was completely abolished upon desulfation by solvolysis in dimethyl sulfoxide, indicating that 3-O-sulfation at C-3 of 4-alpha-L-fucose 1-> units is responsible for the anticoagulant activity of the polymer.
Resumo:
Hypochlorous acid (HOCl) released by activated leukocytes has been implicated in the tissue damage that characterizes chronic inflammatory diseases. In this investigation, 14 indole derivatives, including metabolites such as melatonin, tryptophan and indole-3-acetic acid, were screened for their ability to inhibit the generation of this endogenous oxidant by stimulated leukocytes. The release of HOCl was measured by the production of taurine-chloramine when the leukocytes (2 x 10(6) cells/mL) were incubated at 37ºC in 10 mM phosphate-buffered saline, pH 7.4, for 30 min with 5 mM taurine and stimulated with 100 nM phorbol-12-myristate acetate. Irrespective of the group substituted in the indole ring, all the compounds tested including indole, 2-methylindole, 3-methylindole, 2,3-dimethylindole, 2,5-dimethylindole, 2-phenylindole, 5-methoxyindole, 6-methoxyindole, 5-methoxy-2-methylindole, melatonin, tryptophan, indole-3-acetic acid, 5-methoxy-2-methyl-3-indole-acetic acid, and indomethacin (10 µM) inhibited the chlorinating activity of myeloperoxidase (MPO) in the 23-72% range. The compounds 3-methylindole and indole-3-acetic acid were chosen as representative of indole derivatives in a dose-response study using purified MPO. The IC50 obtained were 0.10 ± 0.03 and 5.0 ± 1.0 µM (N = 13), respectively. These compounds did not affect the peroxidation activity of MPO or the production of superoxide anion by stimulated leukocytes. By following the spectral change of MPO during the enzyme turnover, the inhibition of HOCl production can be explained on the basis of the accumulation of the redox form compound-II (MPO-II), which is an inactive chlorinating species. These results show that indole derivatives are effective and selective inhibitors of MPO-chlorinating activity.
Resumo:
Carboxypeptidase M (CPM) is an extracellular glycosylphosphatidyl-inositol-anchored membrane glycoprotein, which removes the C-terminal basic residues, lysine and arginine, from peptides and proteins at neutral pH. CPM plays an important role in the control of peptide hormones and growth factor activity on the cell surface. The present study was carried out to clone and express human CPM in the yeast Pichia pastoris in order to evaluate the importance of this enzyme in physiological and pathological processes. The cDNA for the enzyme was amplified from total placental RNA by RT-PCR and cloned in the vector pPIC9, which uses the methanol oxidase promoter and drives the expression of high levels of heterologous proteins in P. pastoris. The cpm gene, after cloning and transfection, was integrated into the yeast genome, which produced the active protein. The recombinant protein was secreted into the medium and the enzymatic activity was measured using the fluorescent substrate dansyl-Ala-Arg. The enzyme was purified by a two-step protocol including gel filtration and ion-exchange chromatography, resulting in a 1753-fold purified active protein (16474 RFU mg protein-1 min-1). This purification protocol permitted us to obtain 410 mg of the purified protein per liter of fermentation medium. SDS-PAGE showed that recombinant CPM migrated as a single band with a molecular mass similar to that of native placental enzyme (62 kDa), suggesting that the expression of a glycosylated protein had occurred. These results demonstrate for the first time the establishment of a method using P. pastoris to express human CPM necessary to the development of specific antibodies and antagonists, and the analysis of the involvement of this peptidase in different physiological and pathological processes
Resumo:
The growing interest in lipase production is related to the potential biotechnological applications that these enzymes present. Current studies on lipase production by submerged fermentation involve the use of agro-industrial residues aiming at increasing economic attractiveness. Based on these aspects, the objective of this work was to investigate lipase production by Penicillium verrucosum in submerged fermentation using a conventional medium based on peptone, yeast extract, NaCl and olive oil, and an industrial medium based on corn steep liquor, Prodex Lac (yeast hydrolysate), NaCl and olive oil, as well as to characterize the crude enzymatic extracts obtained. Kinetics of lipase production was evaluated and the highest enzymatic activities, of 3.15 and 2.22 U.mL-1, were observed when conventional and industrial media were used, respectively. The enzymatic extract showed optimal activity in the range from 30 to 40 °C and at pH 7.0. Although the industrial medium presents economical advantages over the conventional medium, the presence of agro-industrial residues rich in nitrogen and other important nutrients seemed to contribute to a reduction in lipase activity.
Resumo:
The purpose of this study is to investigate whether commercial Kraft lignin can be treated with pulsed corona discharge apparatus so that it becomes active. Active lignin refers to the kind of lignin that can be precipitated on the surface of a fiber by lowering the pH. A secondary agenda here is to remove the pungent smell of kraft lignin, which is caused by organically bound sulfur. It is expected that the study will identify mild processing conditions and parameters for achievement of the desired outcome. In the literature review, the properties of lignin are explained, as is their impact on any further processing. In addition, a number of processes are described for the oxidation of lignin in a variety of applications. In the experimental part of the study, test runs were conducted to determine the effects of oxygen supply and pulse frequency on oxidation results, where the purpose is to produce reactive lignin and to find a process that is feasible at an industrial scale. Based on the reported experiments, lignin could not be made active or precipitated to the surface of the fiber. Actual changes in the structure of lignin were not observed, but the pungent smell of lignin was removed. The exact reason for this change could not be established because sulfur NMR analysis did not work for the lignin samples.
Resumo:
A crude extract of Spondias spp. was evaluated for the influence of pH and temperature on the activity and stability of its peroxidases and polyphenol-oxidases. In order to evaluate the conditions for the inactivation of the enzymes by heat treatment and by addition of a reducing agent, a factorial experimental design (n = 3) was employed using the Statistica (6.0) software package for data analysis. The optimal conditions found for peroxidases were: pH = 5.0 and temperature = 40 ºC, and for polyphenol-oxidases they were pH = 7.0 and temperature = 40 ºC. The peroxidases and polyphenol-oxidases were stable at all pH values tested (3.0 - 10.0) and maintained more than 60% of their activity at temperatures above 30 and 40 ºC, respectively. To achieve the total inactivation of these enzymes, two alternatives can be suggested: incubation at 92 ºC for 3.15 minutes with 200 mg.L-1 of ascorbic acid or incubation at 96 ºC for 2.80 minutes with 100 mg.L-1 of ascorbic acid.
Resumo:
The effect of two levels (0.5 and 1%) of hydroalcoholic extract of Achyrocline satureioides on the safety (TBARS values) and quality (pH, water activity, colour, weight loss, and sensorial attributes) of salami was evaluated. The addition of Achyrocline satureioides extract decreased TBARS values significantly during the storage of salami when compared to the control, which was elaborated without Achyrocline satureioides extract. The treatment with 1% of "Marcela" extract showed larger lipid stability than that of the lot with 0.5%, However, it presented a decrease (p < 0.05) in the sensorial acceptance. The two levels of "Marcela" extract did not influence pH, water activity, colour, and weight loss significantly. This study indicates that the hydroalcoholic extract of "Marcela" was effective in decreasing the lipid oxidation and at 0.5% it did not alter the sensorial features; therefore, it may be used in salami to provide safer products for the consumers.